RESUMO
Despite some evidence indicating diverse roles of whirlin in neurons, the functional corollary of whirlin gene function and behavior has not been investigated or broadly characterized. A single nucleotide variant was identified from our recessive ENU-mutagenesis screen at a donor-splice site in whirlin, a protein critical for proper sensorineural hearing function. The mutation (head-bob, hb) led to partial intron-retention causing a frameshift and introducing a premature termination codon. Mutant mice had a head-bobbing phenotype and significant hyperactivity across several phenotyping tests. Lack of complementation of head-bob with whirler mutant mice confirmed the head-bob mutation as functionally distinct with compound mutants having a mild-moderate hearing defect. Utilizing transgenics, we demonstrate rescue of the hyperactive phenotype and combined with the expression profiling data conclude whirlin plays an essential role in activity-related behaviors. These results highlight a pleiotropic role of whirlin within the brain and implicate alternative, central mediated pathways in its function.
RESUMO
The link between mutations in collagen genes and the development of Alport Syndrome has been clearly established and a number of animal models, including knock-out mouse lines, have been developed that mirror disease observed in patients. However, it is clear from both patients and animal models that the progression of disease can vary greatly and can be modified genetically. We have identified a point mutation in Col4a4 in mice where disease is modified by strain background, providing further evidence of the genetic modification of disease symptoms. Our results indicate that C57BL/6J is a protective background and postpones end stage renal failure from 7 weeks, as seen on a C3H background, to several months. We have identified early differences in disease progression, including expression of podocyte-specific genes and podocyte morphology. In C57BL/6J mice podocyte effacement is delayed, prolonging normal renal function. The slower disease progression has allowed us to begin dissecting the pathogenesis of murine Alport Syndrome in detail. We find that there is evidence of differential gene expression during disease on the two genetic backgrounds, and that disease diverges by 4 weeks of age. We also show that an inflammatory response with increasing MCP-1 and KIM-1 levels precedes loss of renal function.
Assuntos
Colágeno Tipo IV/genética , Patrimônio Genético , Mutação , Nefrite Hereditária/genética , Animais , Modelos Animais de Doenças , Progressão da Doença , Predisposição Genética para Doença , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Nefrite Hereditária/metabolismo , Podócitos/metabolismoRESUMO
Isocitrate dehydrogenase (IDH) is an enzyme required for the production of α-ketoglutarate from isocitrate. IDH3 generates the NADH used in the mitochondria for ATP production, and is a tetramer made up of two α, one ß and one γ subunit. Loss-of-function and missense mutations in both IDH3A and IDH3B have previously been implicated in families exhibiting retinal degeneration. Using mouse models, we investigated the role of IDH3 in retinal disease and mitochondrial function. We identified mice with late-onset retinal degeneration in a screen of ageing mice carrying an ENU-induced mutation, E229K, in Idh3a Mice homozygous for this mutation exhibit signs of retinal stress, indicated by GFAP staining, as early as 3â months, but no other tissues appear to be affected. We produced a knockout of Idh3a and found that homozygous mice do not survive past early embryogenesis. Idh3a-/E229K compound heterozygous mutants exhibit a more severe retinal degeneration compared with Idh3aE229K/E229K homozygous mutants. Analysis of mitochondrial function in mutant cell lines highlighted a reduction in mitochondrial maximal respiration and reserve capacity levels in both Idh3aE229K/E229K and Idh3a-/E229K cells. Loss-of-function Idh3b mutants do not exhibit the same retinal degeneration phenotype, with no signs of retinal stress or reduction in mitochondrial respiration. It has previously been reported that the retina operates with a limited mitochondrial reserve capacity and we suggest that this, in combination with the reduced reserve capacity in mutants, explains the degenerative phenotype observed in Idh3a mutant mice.This article has an associated First Person interview with the first author of the paper.
Assuntos
Isocitrato Desidrogenase/genética , Mitocôndrias/patologia , Mutação/genética , Degeneração Retiniana/genética , Degeneração Retiniana/fisiopatologia , Animais , Fibroblastos/metabolismo , Genótipo , Isocitrato Desidrogenase/metabolismo , Mutação com Perda de Função/genética , Camundongos , Mutação de Sentido Incorreto/genética , Fenótipo , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Retina/patologia , Retina/fisiopatologiaRESUMO
Aging is inevitable, and our society must deal with the consequences: namely, an increased incidence of disease and ill health. Many mouse models of disease are acute or early onset or are induced in young mice, despite the fact that aging is a significant risk factor for a range of significant diseases. To improve modeling of such diseases, we should incorporate aging into our models. Many systems are affected by aging, with a decline in mitochondrial function, an increase in senescence, a loss of resilience, telomere shortening, and a decline in immune function being key factors in the increased susceptibility to disease that is associated with aging. To develop novel models of age-related disease, we undertook a phenotype-driven screen of a pipeline of mutagenized mice. Here, we describe some of the underlying protocols and outline important aspects to consider when studying aged mice. © 2018 by John Wiley & Sons, Inc.
Assuntos
Envelhecimento , Modelos Animais de Doenças , Mutação , Fenótipo , Animais , CamundongosRESUMO
Determining the genetic bases of age-related disease remains a major challenge requiring a spectrum of approaches from human and clinical genetics to the utilization of model organism studies. Here we report a large-scale genetic screen in mice employing a phenotype-driven discovery platform to identify mutations resulting in age-related disease, both late-onset and progressive. We have utilized N-ethyl-N-nitrosourea mutagenesis to generate pedigrees of mutagenized mice that were subject to recurrent screens for mutant phenotypes as the mice aged. In total, we identify 105 distinct mutant lines from 157 pedigrees analysed, out of which 27 are late-onset phenotypes across a range of physiological systems. Using whole-genome sequencing we uncover the underlying genes for 44 of these mutant phenotypes, including 12 late-onset phenotypes. These genes reveal a number of novel pathways involved with age-related disease. We illustrate our findings by the recovery and characterization of a novel mouse model of age-related hearing loss.
Assuntos
Envelhecimento/genética , Testes Genéticos , Mutagênese/genética , Animais , Cóclea/metabolismo , Modelos Animais de Doenças , Epitélio/ultraestrutura , Potenciais Evocados Auditivos do Tronco Encefálico/fisiologia , Feminino , Audição/genética , Masculino , Camundongos Endogâmicos C57BL , Mutação/genética , Linhagem , FenótipoRESUMO
The circadian system is entrained to the environmental light/dark cycle via retinal photoreceptors and regulates numerous aspects of physiology and behavior, including sleep. These processes are all key factors in healthy aging showing a gradual decline with age. Despite their importance, the exact mechanisms underlying this decline are yet to be fully understood. One of the most effective tools we have to understand the genetic factors underlying these processes are genetically inbred mouse strains. The most commonly used reference mouse strain is C57BL/6J, but recently, resources such as the International Knockout Mouse Consortium have started producing large numbers of mouse mutant lines on a pure genetic background, C57BL/6N. Considering the substantial genetic diversity between mouse strains we expect there to be phenotypic differences, including differential effects of aging, in these and other strains. Such differences need to be characterized not only to establish how different mouse strains may model the aging process but also to understand how genetic background might modify age-related phenotypes. To ascertain the effects of aging on sleep/wake behavior, circadian rhythms, and light input and whether these effects are mouse strain-dependent, we have screened C57BL/6J, C57BL/6N, C3H-HeH, and C3H-Pde6b+ mouse strains at 5 ages throughout their life span. Our data show that sleep, circadian, and light input parameters are all disrupted by the aging process. Moreover, we have cataloged a number of strain-specific aging effects, including the rate of cataract development, decline in the pupillary light response, and changes in sleep fragmentation and the proportion of time spent asleep.