Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
bioRxiv ; 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38559248

RESUMO

Spn1 is a multifunctional histone chaperone essential for life in eukaryotes. While previous work has elucidated regions of the protein important for its many interactions, it is unknown how these domains contribute to the maintenance of chromatin structure. Here, we employ digestion by micrococcal nuclease followed by single-stranded library preparation and sequencing (MNase-SSP) to characterize chromatin structure in yeast expressing wild-type or mutants of Spn1. We mapped nucleosome and subnucleosomal protections genome-wide, and surprisingly, we observed a genome-wide loss of subnucleosomal protection over nucleosome-depleted regions (NDRs) in the Spn1-K192N-containing strain, indicating critical functions of Spn1 in maintaining normal chromatin architecture in promoter regions. Additionally, alterations in nucleosome and hexasome positioning were observed in markedly different mutant Spn1 strains, demonstrating that multiple functions of Spn1 are required to maintain proper chromatin structure in open reading frames, particularly at higher expressed and longer genes. Taken together, our results reveal a previously unknown role of Spn1 in the maintenance of NDR architecture and deepen our understanding of Spn1-dependent chromatin maintenance over transcribed regions.

2.
J Mol Biol ; 434(13): 167630, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35595162

RESUMO

Histone chaperones facilitate the assembly and disassembly of nucleosomes and regulate DNA accessibility for critical cellular processes. Spn1 is an essential, highly conserved histone chaperone that functions in transcription initiation and elongation in a chromatin context. Here we demonstrate that Spn1 binds H3-H4 with low nanomolar affinity, residues 85-99 within the acidic N-terminal region of Spn1 are required for H3-H4 binding, and Spn1 binding to H3-H4 dimers does not impede (H3-H4)2 tetramer formation. Previous work has shown the central region of Spn1 (residues 141-305) is important for interaction with Spt6, another conserved and essential histone chaperone. We show that the C-terminal region of Spn1 also contributes to Spt6 binding and is critical for Spn1 binding to nucleosomes. We also show Spt6 preferentially binds H3-H4 tetramers and Spt6 competes with nucleosomes for Spn1 binding. Combined with previous results, this indicates the Spn1-Spt6 complex does not bind nucleosomes. In contrast to nucleosome binding, we found that the Spn1-Spt6 complex can bind H3-H4 dimers and tetramers and H2A-H2B to form ternary complexes. These important results provide new information about the functions of Spn1, Spt6, and the Spn1-Spt6 complex, two essential and highly conserved histone chaperones.


Assuntos
Chaperonas de Histonas/metabolismo , Histonas , Nucleossomos , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Elongação da Transcrição/metabolismo , Cromatina , DNA/metabolismo , Chaperonas de Histonas/química , Histonas/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Fatores de Elongação da Transcrição/química
3.
Genetics ; 210(4): 1227-1237, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30301740

RESUMO

Cells expend a large amount of energy to maintain their DNA sequence. DNA repair pathways, cell cycle checkpoint activation, proofreading polymerases, and chromatin structure are ways in which the cell minimizes changes to the genome. During replication, the DNA-damage tolerance pathway allows the replication forks to bypass damage on the template strand. This avoids prolonged replication fork stalling, which can contribute to genome instability. The DNA-damage tolerance pathway includes two subpathways: translesion synthesis and template switch. Post-translational modification of PCNA and the histone tails, cell cycle phase, and local DNA structure have all been shown to influence subpathway choice. Chromatin architecture contributes to maintaining genome stability by providing physical protection of the DNA and by regulating DNA-processing pathways. As such, chromatin-binding factors have been implicated in maintaining genome stability. Using Saccharomyces cerevisiae, we examined the role of Spn1 (Suppresses postrecruitment gene number 1), a chromatin-binding and transcription elongation factor, in DNA-damage tolerance. Expression of a mutant allele of SPN1 results in increased resistance to the DNA-damaging agent methyl methanesulfonate, lower spontaneous and damage-induced mutation rates, along with increased chronological life span. We attribute these effects to an increased usage of the template switch branch of the DNA-damage tolerance pathway in the spn1 strain. This provides evidence for a role of wild-type Spn1 in promoting genome instability, as well as having ties to overcoming replication stress and contributing to chronological aging.


Assuntos
Envelhecimento/genética , Instabilidade Genômica/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Cromatina/genética , Dano ao DNA/genética , Reparo do DNA/genética , Replicação do DNA/genética , Regulação Fúngica da Expressão Gênica , Genoma Fúngico/genética
4.
Nucleic Acids Res ; 46(5): 2321-2334, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29300974

RESUMO

The process of transcriptional elongation by RNA polymerase II (RNAPII) in a chromatin context involves a large number of crucial factors. Spn1 is a highly conserved protein encoded by an essential gene and is known to interact with RNAPII and the histone chaperone Spt6. Spn1 negatively regulates the ability of Spt6 to interact with nucleosomes, but the chromatin binding properties of Spn1 are largely unknown. Here, we demonstrate that full length Spn1 (amino acids 1-410) binds DNA, histones H3-H4, mononucleosomes and nucleosomal arrays, and has weak nucleosome assembly activity. The core domain of Spn1 (amino acids 141-305), which is necessary and sufficient in Saccharomyces cerevisiae for growth under ideal growth conditions, is unable to optimally interact with histones, nucleosomes and/or DNA and fails to assemble nucleosomes in vitro. Although competent for binding with Spt6 and RNAPII, the core domain derivative is not stably recruited to the CYC1 promoter, indicating chromatin interactions are an important aspect of normal Spn1 functions in vivo. Moreover, strong synthetic genetic interactions are observed with Spn1 mutants and deletions of histone chaperone genes. Taken together, these results indicate that Spn1 is a histone binding factor with histone chaperone functions.


Assuntos
Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Citocromos c/genética , DNA/metabolismo , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Elongação da Transcrição/metabolismo
5.
Elife ; 62017 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-28315523

RESUMO

Nucleosome assembly in the wake of DNA replication is a key process that regulates cell identity and survival. Chromatin assembly factor 1 (CAF-1) is a H3-H4 histone chaperone that associates with the replisome and orchestrates chromatin assembly following DNA synthesis. Little is known about the mechanism and structure of this key complex. Here we investigate the CAF-1•H3-H4 binding mode and the mechanism of nucleosome assembly. We show that yeast CAF-1 binding to a H3-H4 dimer activates the Cac1 winged helix domain interaction with DNA. This drives the formation of a transient CAF-1•histone•DNA intermediate containing two CAF-1 complexes, each associated with one H3-H4 dimer. Here, the (H3-H4)2 tetramer is formed and deposited onto DNA. Our work elucidates the molecular mechanism for histone deposition by CAF-1, a reaction that has remained elusive for other histone chaperones, and it advances our understanding of how nucleosomes and their epigenetic information are maintained through DNA replication.


Assuntos
Cromossomos Fúngicos/metabolismo , Replicação do DNA , DNA Fúngico/metabolismo , Histonas/metabolismo , Nucleossomos/metabolismo , Ribonucleases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Fator 1 de Modelagem da Cromatina/metabolismo , Ligação Proteica
6.
Mol Cell Biol ; 36(8): 1287-96, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26884462

RESUMO

Histone chaperones, like nucleosome assembly protein 1 (Nap1), play a critical role in the maintenance of chromatin architecture. Here, we use the GAL locus in Saccharomyces cerevisiae to investigate the influence of Nap1 on chromatin structure and histone dynamics during distinct transcriptional states. When the GAL locus is not expressed, cells lacking Nap1 show an accumulation of histone H2A-H2B but not histone H3-H4 at this locus. Excess H2A-H2B interacts with the linker DNA between nucleosomes, and the interaction is independent of the inherent DNA-binding affinity of H2A-H2B for these particular sequences as measured in vitro When the GAL locus is transcribed, excess H2A-H2B is reversed, and levels of all chromatin-bound histones are depleted in cells lacking Nap1. We developed an in vivo system to measure histone exchange at the GAL locus and observed considerable variability in the rate of exchange across the locus in wild-type cells. We recapitulate this variability with in vitro nucleosome reconstitutions, which suggests a contribution of DNA sequence to histone dynamics. We also find that Nap1 is required for transcription-dependent H2A-H2B exchange. Altogether, these results indicate that Nap1 is essential for maintaining proper chromatin composition and modulating the exchange of H2A-H2B in vivo.


Assuntos
Galactoquinase/genética , Loci Gênicos , Histonas/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/genética , Cromatina/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Família Multigênica , Proteína 1 de Modelagem do Nucleossomo/genética , Saccharomyces cerevisiae/genética , Transcrição Gênica
7.
PLoS One ; 10(3): e0118516, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781956

RESUMO

In Saccharomyces cerevisiae, Rtt109, a lysine acetyltransferase (KAT), associates with a histone chaperone, either Vps75 or Asf1. It has been proposed that these chaperones alter the selectivity of Rtt109 or which residues it preferentially acetylates. In the present study, we utilized a label-free quantitative mass spectrometry-based method to determine the steady-state kinetic parameters of acetylation catalyzed by Rtt109-Vps75 on H3 monomer, H3/H4 tetramer, and H3/H4-Asf1 complex. These results show that among these histone conformations, only H3K9 and H3K23 are significantly acetylated under steady-state conditions and that Asf1 promotes H3/H4 acetylation by Rtt109-Vps75. Asf1 equally increases the Rtt109-Vps75 specificity for both of these residues with a maximum stoichiometry of 1:1 (Asf1 to H3/H4), but does not alter the selectivity between these two residues. These data suggest that the H3/H4-Asf1 complex is a substrate for Rtt109-Vps75 without altering selectivity between residues. The deletion of either Rtt109 or Asf1 in vivo results in the same reduction of H3K9 acetylation, suggesting that Asf1 is required for efficient H3K9 acetylation both in vitro and in vivo. Furthermore, we found that the acetylation preference of Rtt109-Vps75 could be directed to H3K56 when those histones already possess modifications, such as those found on histones purified from chicken erythrocytes. Taken together, Vps75 and Asf1 both enhance Rtt109 acetylation for H3/H4, although via different mechanisms, but have little impact on the residue selectivity. Importantly, these results provide evidence that histone chaperones can work together via interactions with either the enzyme or the substrate to more efficiently acetylate histones.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases/metabolismo , Histonas/química , Histonas/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Acetilação , Animais , Biocatálise , Lisina/metabolismo , Espectrometria de Massas , Saccharomyces cerevisiae/metabolismo , Especificidade por Substrato
8.
Nucleic Acids Res ; 41(22): 10124-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24005039

RESUMO

The successful synthesis of a transcript by RNA polymerase II (RNAPII) is a multistage process with distinct rate-limiting steps that can vary depending on the particular gene. A growing number of genes in a variety of organisms are regulated at steps after the recruitment of RNAPII. The best-characterized Saccharomyces cerevisiae gene regulated in this manner is CYC1. This gene has high occupancy of RNAPII under non-inducing conditions, defining it as a poised gene. Here, we find that subunits of the head module of Mediator, Med18 and Med20, and Med19 are required for activation of transcription at the CYC1 promoter in response to environmental cues. These subunits of Mediator are required at the preloaded promoter for normal levels of recruitment and activity of the general transcription factor TFIIH. Strikingly, these Mediator components are dispensable for activation by the same activator at a different gene, which lacks a preloaded polymerase in the promoter region. Based on these results and other studies, we speculate that Mediator plays an essential role in triggering an inactive polymerase at CYC1 into a productively elongating form.


Assuntos
Citocromos c/genética , Regulação Fúngica da Expressão Gênica , Complexo Mediador/fisiologia , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/fisiologia , Carbono/metabolismo , Citocromos c/metabolismo , Deleção de Genes , Complexo Mediador/genética , Complexo Mediador/metabolismo , Estresse Oxidativo/genética , Regiões Promotoras Genéticas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Transcrição/fisiologia
9.
Mol Cell ; 51(5): 662-77, 2013 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-23973327

RESUMO

The histone H2A-H2B heterodimer is an integral component of the nucleosome. The cellular localization and deposition of H2A-H2B into chromatin is regulated by numerous factors, including histone chaperones such as nucleosome assembly protein 1 (Nap1). We use hydrogen-deuterium exchange coupled to mass spectrometry to characterize H2A-H2B and Nap1. Unexpectedly, we find that at low ionic strength, the α helices in H2A-H2B are frequently sampling partially disordered conformations and that binding to Nap1 reduces this conformational sampling. We identify the interaction surface between H2A-H2B and Nap1 and confirm its relevance both in vitro and in vivo. We show that two copies of H2A-H2B bound to a Nap1 homodimer form a tetramer with contacts between H2B chains similar to those in the four-helix bundle structural motif. The organization of the complex reveals that Nap1 competes with histone-DNA and interhistone interactions observed in the nucleosome, thereby regulating the availability of histones for chromatin assembly.


Assuntos
Histonas/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Sítios de Ligação , Montagem e Desmontagem da Cromatina , DNA Fúngico/metabolismo , Medição da Troca de Deutério , Chaperonas de Histonas , Histonas/química , Proteína 1 de Modelagem do Nucleossomo/genética , Nucleossomos , Concentração Osmolar , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Estabilidade Proteica , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Soluções
10.
Genetics ; 190(2): 305-15, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22135354

RESUMO

Exposure to genetic and biochemical experiments typically occurs late in one's academic career. By the time students have the opportunity to select specialized courses in these areas, many have already developed negative attitudes toward the sciences. Given little or no direct experience with the fields of genetics and biochemistry, it is likely that many young people rule these out as potential areas of study or career path. To address this problem, we developed a 7-week (~1 hr/week) hands-on course to introduce fifth grade students to basic concepts in genetics and biochemistry. These young students performed a series of investigations (ranging from examining phenotypic variation, in vitro enzymatic assays, and yeast genetic experiments) to explore scientific reasoning through direct experimentation. Despite the challenging material, the vast majority of students successfully completed each experiment, and most students reported that the experience increased their interest in science. Additionally, the experiments within the 7-week program are easily performed by instructors with basic skills in biological sciences. As such, this program can be implemented by others motivated to achieve a broader impact by increasing the accessibility of their university and communicating to a young audience a positive impression of the sciences and the potential for science as a career.


Assuntos
Bioquímica/educação , Genética/educação , Criança , Currículo , Humanos
11.
Genet Res Int ; 2011: 206290, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22567346

RESUMO

The initial discovery of the occupancy of RNA polymerase II at certain genes prior to their transcriptional activation occurred a quarter century ago in Drosophila. The preloading of these poised complexes in this inactive state is now apparent in many different organisms across the evolutionary spectrum and occurs at a broad and diverse set of genes. In this paper, we discuss the genetic and biochemical efforts in S. cerevisiae to describe the conversion of these poised transcription complexes to the active state for productive elongation. The accumulated evidence demonstrates that a multitude of coactivators and chromatin remodeling complexes are essential for this transition.

12.
J Mol Biol ; 404(1): 1-15, 2010 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-20875428

RESUMO

Spn1/Iws1 plays essential roles in the regulation of gene expression by RNA polymerase II (RNAPII), and it is highly conserved in organisms ranging from yeast to humans. Spn1 physically and/or genetically interacts with RNAPII, TBP (TATA-binding protein), TFIIS (transcription factor IIS), and a number of chromatin remodeling factors (Swi/Snf and Spt6). The central domain of Spn1 (residues 141-305 out of 410) is necessary and sufficient for performing the essential functions of SPN1 in yeast cells. Here, we report the high-resolution (1.85 Å) crystal structure of the conserved central domain of Saccharomyces cerevisiae Spn1. The central domain is composed of eight α-helices in a right-handed superhelical arrangement and exhibits structural similarity to domain I of TFIIS. A unique structural feature of Spn1 is a highly conserved loop, which defines one side of a pronounced cavity. The loop and the other residues forming the cavity are highly conserved at the amino acid level among all Spn1 family members, suggesting that this is a signature motif for Spn1 orthologs. The locations and the molecular characterization of temperature-sensitive mutations in Spn1 indicate that the cavity is a key attribute of Spn1 that is critical for its regulatory functions during RNAPII-mediated transcriptional activity.


Assuntos
Regulação da Expressão Gênica , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Fatores de Transcrição/química , Sequência Conservada , Cristalografia por Raios X , Modelos Moleculares , Mutação de Sentido Incorreto , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Temperatura , Fatores de Transcrição/metabolismo
13.
J Cell Physiol ; 224(2): 289-99, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20432449

RESUMO

The "chromogenome" is defined as the structural and functional status of the genome at any given moment within a eukaryotic cell. This article focuses on recently uncovered relationships between histone chaperones, post-translational acetylation of histones, and modulation of the chromogenome. We emphasize those chaperones that function in a replication-independent manner, and for which three-dimensional structural information has been obtained. The emerging links between histone acetylation and chaperone function in both yeast and higher metazoans are discussed, including the importance of nucleosome-free regions. We close by posing many questions pertaining to how the coupled action of histone chaperones and acetylation influences chromogenome structure and function.


Assuntos
Cromossomos/metabolismo , Genoma/genética , Chaperonas de Histonas/metabolismo , Histonas/metabolismo , Acetilação , Animais , Humanos , Nucleossomos/metabolismo
14.
Mol Cell ; 37(6): 834-42, 2010 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-20347425

RESUMO

The organization of the eukaryotic genome into nucleosomes dramatically affects the regulation of gene expression. The delicate balance between transcription and DNA compaction relies heavily on nucleosome dynamics. Surprisingly, little is known about the free energy required to assemble these large macromolecular complexes and maintain them under physiological conditions. Here, we describe the thermodynamic parameters that drive nucleosome formation in vitro. To demonstrate the versatility of our approach, we test the effect of DNA sequence and H3K56 acetylation on nucleosome thermodynamics. Furthermore, our studies reveal the mechanism of action of the histone chaperone nucleosome assembly protein 1 (Nap1). We present evidence for a paradigm in which nucleosome assembly requires the elimination of competing, nonnucleosomal histone-DNA interactions by Nap1. This observation is confirmed in vivo, wherein deletion of the NAP1 gene in yeast results in a significant increase in atypical histone-DNA complexes, as well as in deregulated transcription activation and repression.


Assuntos
DNA/metabolismo , Histonas/metabolismo , Proteína 1 de Modelagem do Nucleossomo/metabolismo , Nucleossomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Acetilação , Animais , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Proteína 1 de Modelagem do Nucleossomo/genética , Ligação Proteica , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Termodinâmica , Transcrição Gênica , Xenopus laevis
15.
Genetics ; 184(3): 659-72, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20048049

RESUMO

A growing number of promoters have key components of the transcription machinery, such as TATA-binding protein (TBP) and RNA polymerase II (RNAPII), present at the promoter prior to activation of transcription. Thus, while transcriptional output undergoes a dramatic increase between uninduced and induced conditions, occupancy of a large portion of the transcription machinery does not. As such, activation of these poised promoters depends on rate-limiting steps after recruitment of TBP and RNAPII for regulated expression. Little is known about the transcription components required in these latter steps of transcription in vivo. To identify components with critical roles in transcription after recruitment of TBP in Saccharomyces cerevisiae, we screened for loss of gene expression activity from promoter-tethered TBP in >100 mutant strains deleted for a transcription-related gene. The assay revealed a dramatic enrichment for strains containing deletions in genes encoding subunits of the Spt-Ada-Gcn5-acetyltransferase (SAGA) complex and Mediator. Analysis of an authentic postrecruitment-regulated gene (CYC1) reveals that SAGA occupies the promoter under both uninduced and induced conditions. In contrast, Mediator is recruited only after transfer to inducing conditions and correlates with activation of the preloaded polymerase at CYC1. These studies indicate the critical functions of SAGA and Mediator in the mechanism of activation of genes with rate-limiting steps after recruitment of TBP.


Assuntos
Regulação Fúngica da Expressão Gênica/fisiologia , Regiões Promotoras Genéticas/fisiologia , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Transcrição Gênica/fisiologia , Citocromos c/biossíntese , Citocromos c/genética , Deleção de Genes , Genes Fúngicos/fisiologia , RNA Polimerase II/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/biossíntese , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Transativadores/genética
16.
Mol Cell Biol ; 28(4): 1393-403, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18086892

RESUMO

We investigated the timing of the recruitment of Spn1 and its partner, Spt6, to the CYC1 gene. Like TATA binding protein and RNA polymerase II (RNAPII), Spn1 is constitutively recruited to the CYC1 promoter, although levels of transcription from this gene, which is regulated postrecruitment of RNAPII, are low. In contrast, Spt6 appears only after growth in conditions in which the gene is highly transcribed. Spn1 recruitment is via interaction with RNAPII, since an spn1 mutant defective for interaction with RNAPII is not targeted to the promoter, and Spn1 is necessary for Spt6 recruitment. Through a targeted genetic screen, strong and specific antagonizing interactions between SPN1 and genes encoding Swi/Snf subunits were identified. Like Spt6, Swi/Snf appears at CYC1 only after activation of the gene. However, Spt6 significantly precedes Swi/Snf occupancy at the promoter. In the absence of Spn1 recruitment, Swi/Snf is constitutively found at the promoter. These observations support a model whereby Spn1 negatively regulates RNAPII transcriptional activity by inhibiting recruitment of Swi/Snf to the CYC1 promoter, and this inhibition is abrogated by the Spn1-Spt6 interaction. These findings link Spn1 functions to the transition from an inactive to an actively transcribing RNAPII complex at a postrecruitment-regulated promoter.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Proteínas Nucleares/metabolismo , RNA Polimerase II/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional , Citocromos c/genética , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Chaperonas de Histonas , Proteínas Mutantes/metabolismo , Fenótipo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Fatores de Tempo , Transcrição Gênica , Fatores de Elongação da Transcrição
17.
Nat Struct Mol Biol ; 15(9): 957-64, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19172749

RESUMO

Rtt109 is a histone acetyltransferase that requires a histone chaperone for the acetylation of histone 3 at lysine 56 (H3K56). Rtt109 forms a complex with the chaperone Vps75 in vivo and is implicated in DNA replication and repair. Here we show that both Rtt109 and Vps75 bind histones with high affinity, but only the complex is efficient for catalysis. The C-terminal acidic domain of Vps75 contributes to activation of Rtt109 and is necessary for in vivo functionality of Vps75, but it is not required for interaction with either Rtt109 or histones. We demonstrate that Vps75 is a structural homolog of yeast Nap1 by solving its crystal structure. Nap1 and Vps75 interact with histones and Rtt109 with comparable affinities. However, only Vps75 stimulates Rtt109 enzymatic activity. Our data highlight the functional specificity of Vps75 in Rtt109 activation.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Histona Acetiltransferases/química , Histona Acetiltransferases/metabolismo , Histonas/química , Histonas/metabolismo , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Proteínas de Ciclo Celular/genética , Cristalografia por Raios X , Genes Fúngicos , Histona Acetiltransferases/genética , Cinética , Substâncias Macromoleculares/química , Modelos Moleculares , Chaperonas Moleculares/genética , Dados de Sequência Molecular , Proteínas Nucleares/genética , Proteína 1 de Modelagem do Nucleossomo , Fenótipo , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato
18.
Eukaryot Cell ; 5(7): 1081-90, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16835452

RESUMO

To characterize the role of the general transcription factor TFIIA in the regulation of gene expression by RNA polymerase II, we examined the transcriptional profiles of TFIIA mutants of Saccharomyces cerevisiae using DNA microarrays. Whole-genome expression profiles were determined for three different mutants with mutations in the gene coding for the small subunit of TFIIA, TOA2. Depending on the particular mutant strain, approximately 11 to 27% of the expressed genes exhibit altered message levels. A search for common motifs in the upstream regions of the pool of genes decreased in all three mutants yielded the binding site for Yap1, the transcription factor that regulates the response to oxidative stress. Consistent with a TFIIA-Yap1 connection, the TFIIA mutants are unable to grow under conditions that require the oxidative stress response. Underexpression of Yap1-regulated genes in the TFIIA mutant strains is not the result of decreased expression of Yap1 protein, since immunoblot analysis indicates similar amounts of Yap1 in the wild-type and mutant strains. In addition, intracellular localization studies indicate that both the wild-type and mutant strains localize Yap1 indistinguishably in response to oxidative stress. As such, the decrease in transcription of Yap1-dependent genes in the TFIIA mutant strains appears to reflect a compromised interaction between Yap1 and TFIIA. This hypothesis is supported by the observations that Yap1 and TFIIA interact both in vivo and in vitro. Taken together, these studies demonstrate a dependence of Yap1 on TFIIA function and highlight a new role for TFIIA in the cellular mechanism of defense against reactive oxygen species.


Assuntos
Estresse Oxidativo/fisiologia , Saccharomyces cerevisiae/fisiologia , Fator de Transcrição TFIIA/fisiologia , Sequência de Aminoácidos , Núcleo Celular , Análise por Conglomerados , Sondas de DNA , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Fenótipo , Ligação Proteica , Espécies Reativas de Oxigênio/efeitos adversos , Saccharomyces cerevisiae/crescimento & desenvolvimento , Proteínas de Saccharomyces cerevisiae/metabolismo , Homologia de Sequência de Aminoácidos , Distribuição Tecidual , Fator de Transcrição TFIIA/genética , Fatores de Transcrição/metabolismo
19.
J Biol Chem ; 281(32): 22665-73, 2006 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-16772290

RESUMO

To reveal mechanistic differences in transcription initiation between variant TATA elements, in vivo and in vitro assays of the functional activity of 14 different sequences were compared. Variant elements exhibited particular degrees of activation in vivo but universally were unable to support the -fold activation observed for an element consisting of TATAAA. Each element was classified by its functional activity for in vitro interaction with TATA-binding protein (TBP), TFIIA, and TFIIB. Certain off-consensus TATA elements form poor binding sites for TBP and this compromised interaction interferes with higher order complex formation with TFIIA and/or TFIIB. Other elements are only modestly decreased for TBP binding but dramatically affected for higher order complex formation. Another distinct category is comprised of two elements (CATAAA and TATAAG), which are not affected in the initial formation of the TBP, TFIIA-TBP, or TFIIB-TBP complexes. However, CATAAA and TATAAG are unable to form a stable TFIIA-TBP-DNA complex in vitro. Moreover, fusion of TFIIA to TBP specifically restores activity from these two elements in vivo. Taken together, these results indicate that the interplay between the sequence of the TATA element and the components of the general transcription machinery can lead to variations in the formation of functional complexes and/or the stability of these complexes. These differences offer distinct opportunities for an organism to exploit diverse steps in the regulation of gene expression depending on the precise TATA element sequence at a given gene.


Assuntos
Regulação da Expressão Gênica , TATA Box , Proteína de Ligação a TATA-Box/química , Sequência de Bases , Sítios de Ligação , Citosina/química , Escherichia coli/metabolismo , Proteínas Fúngicas/química , Guanina/química , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Ligação Proteica , Proteínas Recombinantes/química , Transcrição Gênica
20.
Nucleic Acids Res ; 31(4): 1252-60, 2003 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-12582245

RESUMO

A major rate-limiting step in transcription initiation by RNA polymerase II is recognition and binding of the TATA element by the transcription factor TFIID. TFIID is composed of TATA binding protein (TBP) and approximately a dozen TBP-associated factors (TAFs). Emerging consensus regarding the role of TAFs is that TFIID assumes a gene specific activity that is regulated by interaction with other factors. In spite of many studies demonstrating the essential nature of TAFs in transcription, very little is known about the subunit contacts within TFIID. To understand fully the functional role of TAFs, it is imperative to define TAF-TAF interactions and their topological arrangement within TFIID. We performed a systematic two-hybrid analysis using the 13 essential TAFs of the Saccharomyces cerevisiae TFIID complex and TBP. Specific interactions were defined for each component, and the biological significance of these interactions is supported by numerous genetic and biochemical studies. By combining the interaction profiles presented here, and the available studies utilizing specific TAFs, we propose a working hypothesis for the arrangement of components in the TFIID complex. Thus, these results serve as a foundation for understanding the overall architecture of yeast TFIID.


Assuntos
Mapeamento de Interação de Proteínas/métodos , Saccharomyces cerevisiae/metabolismo , Fator de Transcrição TFIID/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/genética , Fatores Associados à Proteína de Ligação a TATA/genética , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Fator de Transcrição TFIID/genética , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA