Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-37436440

RESUMO

Butterflies often have conspicuously patterned wings, due to pigmentary and/or structurally wing scales that cover the wing membrane. The wing membrane of several butterfly species is also pigmentary coloured, notably by the bile pigments pterobilin, pharcobilin and sarpedobilin. The absorption spectra of the bilins have bands in the ultraviolet and red wavelength range, resulting in blue-cyan colours. Here, a survey of papilionoid and nymphalid butterflies reveals that several species with wings containing bile pigments combine them with carotenoids and other short-wavelength absorbing pigments, e.g., papiliochrome II, ommochromes and flavonoids, which creates green-coloured patterns. Various uncharacterized, long-wavelength absorbing wing pigments were encountered, particularly in heliconiines. The wings thus exhibit quite variable reflectance spectra, extending the enormous pigmentary and structural colouration richness of butterflies.

2.
J Exp Biol ; 226(10)2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37232483

RESUMO

The wings of the purple spotted swallowtail Graphium weiskei are marked by an unusual bright colour pattern. Spectrophotometry on G. weiskei wings demonstrated the presence of a pigment with an absorption spectrum (peak wavelength λmax=676 nm) similar to that of the bile pigment sarpedobilin in the wings of the congeneric Graphium sarpedon (λmax=672 nm). Sarpedobilin alone causes cyan-blue wing areas, but the green-coloured areas of G. sarpedon wings result from subtractive colour mixing with the carotenoid lutein. Reflectance spectra of the blue-coloured areas of G. weiskei wings indicate that sarpedobilin is mixed with the short-wavelength-absorbing papiliochrome II. An enigmatic pigment, tentatively called weiskeipigment (λmax=580 nm), enhances the saturation of the blue colour. Weiskeipigment causes a purple colour in areas where the sarpedobilin concentration is low. The wings of the related papilionid Papilio phorcas contain the bile pigment pharcobilin (λmax=604 nm), as well as another sarpedobilin (λmax=663 nm). The cyan to greenish wings of P. phorcas are due to phorcabilin and sarpedobilin mixed with papiliochrome II. A survey of known subspecies of G. weiskei as well as of congeneric Graphium species of the 'weiskei' group shows various degrees of subtractive colour mixing of bilins and short-wavelength absorbers (carotenoids and/or papiliochromes) in their wings. This study illuminates the underestimated role of bile pigments in butterfly wing colouration.


Assuntos
Borboletas , Animais , Cor , Pigmentação , Espectrofotometria , Pigmentos Biliares , Asas de Animais
3.
Naturwissenschaften ; 110(3): 22, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37219688

RESUMO

Carpenter bees can display distinct colouration patterns due to structural coloured wings and/or coloured hairs on their bodies. Females of the sexually dichromatic Xylocopa caerulea are marked by strongly blue-pigmented hairs on the head, thorax and abdomen. The thorax of female X. confusa is covered by yellow-pigmented hairs. The diffuse pigmentary colouration of the blue and yellow hairs is effectively enhanced by strongly scattering granules. The absorption spectrum of the blue pigment of X. caerulea has a maximum at 605 nm and is probably a bilin (a bile pigment). The absorption spectrum of the yellow pigment of X. confusa has a maximum at 445 nm and may be a pterin. The thoracic hairs of female X. confusa contain also a minor amount of the bilin. The reflectance spectra of the pigmented hairs suggest that the pigments are tuned to the spectral sensitivity of the bees' photoreceptors and provide spectral contrast with a green background.


Assuntos
Pigmentos Biliares , Cabelo , Feminino , Animais , Abelhas , Tórax
4.
Insects ; 14(3)2023 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-36975919

RESUMO

The light reflected by the dorsal side of butterfly wings often functions as a signal for, e.g., mate choice, thermoregulation, and/or predator deterrence, while the ventral wing reflections are generally used for crypsis and camouflage. Here, we propose that transmitted light can also have an important role in visual signaling because, in many butterfly species, the dorsal and ventral wing sides are similarly patterned and locally more or less translucent. Extreme examples are the Japanese yellow swallowtail (Papilio xuthus Linnaeus, 1758) and the Yellow glassy tiger (Parantica aspasia Fabricius, 1787). Their wings exhibit a similar color pattern in reflected and transmitted light, which allows enhanced visual signaling, especially in flight. Contrasting cases in which the coloration and patterning of dorsal and ventral wings strongly differ are the papilionid Papilio nireus Linnaeus, 1758, and the pierid Delias nigrina Fabricius, 1775. The wings observed in reflected or transmitted light then show very different color patterns. Wing translucence thus will strongly affect a butterfly's visual signal.

5.
Proc Biol Sci ; 290(1992): 20222319, 2023 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-36750184

RESUMO

Circadian light entrainment in some insects is regulated by blue-light-sensitive cryptochrome (CRY) protein that is expressed in the clock neurons, but this is not the case in hymenopterans. The hymenopteran clock does contain CRY, but it appears to be light-insensitive. Therefore, we investigated the role of retinal photoreceptors in the photic entrainment of the jewel wasp Nasonia vitripennis. Application of monochromatic light stimuli at different light intensities caused phase shifts in the wasp's circadian activity from which an action spectrum with three distinct peaks was derived. Electrophysiological recordings from the compound eyes and ocelli revealed the presence of three photoreceptor classes, with peak sensitivities at 340 nm (ultraviolet), 450 nm (blue) and 530 nm (green). An additional photoreceptor class in the ocelli with sensitivity maximum at 560-580 nm (red) was found. Whereas a simple sum of photoreceptor spectral sensitivities could not explain the action spectrum of the circadian phase shifts, modelling of the action spectrum indicates antagonistic interactions between pairs of spectral photoreceptors, residing in the compound eyes and the ocelli. Our findings imply that the photic entrainment mechanism in N. vitripennis encompasses the neural pathways for measuring the absolute luminance as well as the circuits mediating colour opponency.


Assuntos
Proteínas de Drosophila , Vespas , Animais , Proteínas de Drosophila/metabolismo , Ritmo Circadiano/fisiologia , Luz , Criptocromos/metabolismo
6.
Artigo em Inglês | MEDLINE | ID: mdl-36385431

RESUMO

The tropical carpenter bee, Xylocopa latipes, has metallic-reflecting, iridescent wings. The wing reflectance spectra for TE- and TM-polarized light depend on the angle of light incidence in a way characteristic for dielectric multilayers. Anatomy indicates the presence of melanin multilayers in the wing's chitinous matrix. A simple optical model of melanin multilayers explains the angle dependence of the wing reflectance spectra. The wing reflections that occur upon oblique illumination exhibit colourful and strongly polarized light patterns, which may mediate intraspecific signaling and mutual recognition by conspecifics.


Assuntos
Iridescência , Melaninas , Abelhas , Animais , Asas de Animais/anatomia & histologia
7.
J Vis Exp ; (181)2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35435895

RESUMO

This paper describes the automatic measurement of the spatial organization of the visual axes of insect compound eyes, which consist of several thousands of visual units called ommatidia. Each ommatidium samples the optical information from a small solid angle, with an approximate Gaussian-distributed sensitivity (half-width on the order of 1˚) centered around a visual axis. Together, the ommatidia gather the visual information from a nearly panoramic field of view. The spatial distribution of the visual axes thus determines the eye's spatial resolution. Knowledge of the optical organization of a compound eye and its visual acuity is crucial for quantitative studies of neural processing of the visual information. Here we present an automated procedure for mapping a compound eye's visual axes, using an intrinsic, in vivo optical phenomenon, the pseudopupil, and the pupil mechanism of the photoreceptor cells. We outline the optomechanical setup for scanning insect eyes and use experimental results obtained from a housefly, Musca domestica, to illustrate the steps in the measurement procedure.


Assuntos
Moscas Domésticas , Animais , Insetos , Células Fotorreceptoras , Pupila , Visão Ocular , Acuidade Visual
8.
Biol Lett ; 17(8): 20210190, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34428957

RESUMO

Hummingbirds are perhaps the most exquisite bird species because of their prominent iridescence, created by stacks of melanosomes in the feather barbules. The feather colours crucially depend on the nanoscopic dimensions of the melanosome, and the displayed iridescence can distinctly vary, dependent on the spatial organization of the barbs and barbules. We have taken the genus Coeligena as a model group, with species having feathers that strongly vary in their spatial reflection properties. We studied the feather morphology and the optical characteristics. We found that the coloration of Coeligena hummingbirds depends on both the Venetian-blind-like arrangement of the barbules and the V-shaped, angular arrangement of the barbules at opposite sides of the barbs. Both the nanoscopic and microscopic organization of the hummingbird feather components determine the bird's macroscopic appearance.


Assuntos
Plumas , Iridescência , Animais , Aves
9.
J Exp Biol ; 224(15)2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34291802

RESUMO

The dorsal wings of the mother-of-pearl butterfly, Protogoniomorpha parhassus, display an angle-dependent pink, structural color. This effect is created by light interference in the lower lamina of the wing scales, which acts as an optical thin film. The scales feature extremely large windows that enhance the scale reflectance, because the upper lamina of ridges and cross-ribs is very sparse. Characteristic for thin film reflectors, the spectral shape of the reflected light strongly depends on the angle of light incidence, shifting from pink to yellow when changing the angles of illumination and observation from normal to skew, and also the degree of polarization strongly varies. The simultaneous spectral and polarization changes serve a possibly widespread, highly effective system among butterflies for intraspecific communication during flight.


Assuntos
Borboletas , Nácar , Animais , Cor , Feminino , Humanos , Iridescência , Mães , Pigmentação , Asas de Animais
10.
Annu Rev Entomol ; 66: 435-461, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-32966103

RESUMO

Color vision is widespread among insects but varies among species, depending on the spectral sensitivities and interplay of the participating photoreceptors. The spectral sensitivity of a photoreceptor is principally determined by the absorption spectrum of the expressed visual pigment, but it can be modified by various optical and electrophysiological factors. For example, screening and filtering pigments, rhabdom waveguide properties, retinal structure, and neural processing all influence the perceived color signal. We review the diversity in compound eye structure, visual pigments, photoreceptor physiology, and visual ecology of insects. Based on an overview of the current information about the spectral sensitivities of insect photoreceptors, covering 221 species in 13 insect orders, we discuss the evolution of color vision and highlight present knowledge gaps and promising future research directions in the field.


Assuntos
Evolução Biológica , Visão de Cores , Olho Composto de Artrópodes/fisiologia , Insetos/fisiologia , Células Fotorreceptoras de Invertebrados/fisiologia , Animais , Olho Composto de Artrópodes/citologia , Pigmentos da Retina/genética , Comportamento Espacial/fisiologia
11.
Zoological Lett ; 6(1): 13, 2020 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-33292721

RESUMO

The dorsal wings of male Sasakia charonda butterflies display a striking blue iridescent coloration, which is accentuated by white, orange-yellow and red spots, as well as by brown margins. The ventral wings also have a variegated, but more subdued, pattern. We investigated the optical basis of the various colors of intact wings as well as isolated wing scales by applying light and electron microscopy, imaging scatterometry and (micro)spectrophotometry. The prominent blue iridescence is due to scales with tightly packed, multilayered ridges that contain melanin pigment. The scales in the brown wing margins also contain melanin. Pigments extracted from the orange-yellow and red spots indicate the presence of 3-OH-kynurenine and ommochrome pigment. The scales in the white spots also have multilayered ridges but lack pigment. The lower lamina of the scales plays a so-far undervalued but often crucial role. Its thin-film properties color the majority of the ventral wing scales, which are unpigmented and have large windows. The lower lamina acting as a thin-film reflector generally contributes to the reflectance of the various scale types.

14.
J Insect Physiol ; 127: 104114, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32905790

RESUMO

The pierid butterfly Colias croceus (Geoffroy in Fourcroy, 1785), established in the Azores archipelago, is polymorphic with six forms, C. croceus f. croceus ♂ and ♀, C. c. f. cremonae ♂ and ♀, C. c. f. helice ♀, and C. c. f. cremonaehelice ♀. We investigated the optical mechanisms underlying the wing colouration of the butterflies by performing spectrophotometry and imaging scatterometry of the variously coloured wing areas and scales. The scale colouration is primarily due to wavelength-selective absorption of incident light by pterins expressed in granular beads in the wing scales, but thin film reflections of the scales' lower lamina and scale stacking also contribute. Three forms (croceus ♂ and ♀ and helice ♀) are consistent with the patterns of the well-known 'alba' polymorphism. We postulate the coexistence of a second polymorphism, 'cremonae', to understand the three other forms (cremonae ♂ and ♀, and cremonaehelice ♀), which are characterized by the absence of red pigment, presumably due to the differential blocking of erythropterin expression.


Assuntos
Borboletas/fisiologia , Expressão Gênica , Polimorfismo Genético/fisiologia , Pterinas/metabolismo , Asas de Animais/química , Animais , Açores , Borboletas/genética , Feminino , Masculino , Pigmentação , Asas de Animais/metabolismo
15.
Faraday Discuss ; 223: 81-97, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32760932

RESUMO

We studied the wing colouration and the compound eyes of red admiral butterflies with optical methods. We measured reflectance spectra of the wing and scales of Vanessa atalanta and modelled the thin film reflectance of the wing membrane and blue scales. We utilized the eyeshine in the compound eye of Vanessa indica to determine the spectral and polarisation characteristics of its optical sensor units, the ommatidia. Pupil responses were measured with a large-aperture optophysiological setup as reduction in the eyeshine reflection caused by monochromatic stimuli. Processing of spectral and polarisation responses of individual ommatidia revealed a random array with three types of ommatidia: about 10% contain two blue-sensitive photoreceptors, 45% have two UV-sensitive photoreceptors, and 45% have a mixed UV-blue pair. All types contain six green receptors and a basal photoreceptor. Optical modelling of the rhabdom suggests that the basal photoreceptors have a red-shifted sensitivity, which might enhance the red admiral's ability to discriminate red colours on the wing. Under daylight conditions, the red shift of the basal photoreceptor is ∼30 nm, compared to the rhodopsin spectrum template peaking at 520 nm, while the shift of green photoreceptors is ∼15 nm.


Assuntos
Borboletas/fisiologia , Raios Ultravioleta , Animais , Técnicas Biossensoriais , Transdução de Sinais , Asas de Animais/fisiologia
16.
Faraday Discuss ; 223(0): 145-160, 2020 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-32760964

RESUMO

Until now, hues as dynamic as those adorning the Apatura emperor butterflies have never been encountered in the painting world. Unlike and unmatched by the chemical pigments traditionally found on the painter's palette, the emperor's wings are studded with strongly reflecting iridescent scales that are structured like those of the iconic Morpho butterflies. The scale ridges act as diffractive multilayers, giving rise to narrow-band reflectance spectra. All scales together create a vividly purple iridescent wing colouration that is observed within a narrow angular range only. Recently, synthetic structures analogous to the multilayer reflectors found on butterfly wings have been developed, referred to as effect pigments. Artists can obtain vital clues for how to adapt and adopt these challenging new materials for painting, by tracing the origin of biomimetics back to the ancient concept of mimesis and building on the knowledge accumulated by optical studies. By selecting various effect pigments, and using the lesser purple emperor butterfly, Apatura ilia, as exemplar, we have accurately mimicked the butterfly's iridescence in art. The resulting artwork, like the butterfly, fluctuates in perceived colour depending on the direction of illumination and viewing. These nature-inspired-colouration and biomimetic-application methods extend the canon of art.


Assuntos
Biomimética , Borboletas/metabolismo , Cor , Asas de Animais , Animais , Óptica e Fotônica , Pigmentos Biológicos
17.
Phytochemistry ; 178: 112457, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32692661

RESUMO

Papaver rhoeas, the corn poppy, is a very common weed in cereal fields all over the world. Its flowers generally display a bright red coloration, but their reflectance in the ultraviolet (UV) wavelength range varies geographically. Whereas the UV reflectance of East Mediterranean flowers is minor, that of Central European ones is substantial. By comparing the pigmentation of the differently reflecting flowers, we found that only East Mediterranean flower petals contain high amounts of UV absorbing flavonol glycosides. The most abundant compounds were isolated by solid phase extraction and preparative HPLC, and their structures were elucidated by NMR and HRESI-MS, yielding seven kaempferol and quercetin glycosides, mostly unknown in P. rhoeas petals. Additionally, reflectance and transmittance measurements revealed that wavelength-selective scattering effects do not contribute to the flower color differences observed within this species. Possible abiotic and biotic factors influencing the UV reflecting properties of East Mediterranean and Central European poppies are discussed.


Assuntos
Papaver , Papaveraceae , Flavonóis , Flores , Zea mays
18.
Faraday Discuss ; 223: 49-62, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32720960

RESUMO

Peacock feathers feature a rich gamut of colours, created by a most sophisticated structural colouration mechanism. The feather barbules contain biophotonic structures consisting of two-dimensionally-ordered lattices of cylindrical melanosomes and air channels embedded in keratin. Here, we study the reflectance characteristics of the various peacock tail feather colours by applying bifurcated-probe- and micro-spectrophotometry and imaging scatterometry. We compare the experimental results with published anatomical SEM and TEM data, using a transfer-matrix based effective-medium multilayer model that includes the number and diameter of the melanosome rodlets and air channels, the lattice spacing and the keratin cortex thickness, together with the recently determined wavelength-dependence of the refractive indices of keratin and melanin. Slight variations in the parameter values cause substantial changes in the spectral position and shape of the reflectance bands. We find that the number of layers crucially determines the number of peaks in the reflectance spectra. For a small number of melanosome layers, the reflectance band shape is particularly sensitive to the properties of the uppermost layer, which provides a simple mechanism for tuning the feather colours.


Assuntos
Cor , Plumas , Óptica e Fotônica , Animais , Aves , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Espectrofotometria , Cauda
19.
Plants (Basel) ; 9(8)2020 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-32708009

RESUMO

Evolutionary change is considered a major factor influencing the invasion of new habitats by plants. Yet, evidence on how such modifications promote range expansion remains rather limited. Here we investigated flower color modifications in the red poppy, Papaver rhoeas (Papaveraceae), as a result of its introduction into Central Europe and the impact of those modifications on its interactions with pollinators. We found that while flowers of Eastern Mediterranean poppies reflect exclusively in the red part of the spectrum, those of Central European poppies reflect both red and ultraviolet (UV) light. This change coincides with a shift from pollination by glaphyrid beetles (Glaphyridae) to bees. Glaphyrids have red-sensitive photoreceptors that are absent in bees, which therefore will not be attracted by colors of exclusively red-reflecting flowers. However, UV-reflecting flowers are easily detectable by bees, as revealed by visual modeling. In the North Mediterranean, flowers with low and high UV reflectance occur sympatrically. We hypothesize that Central European populations of P. rhoeas were initially polymorphic with respect to their flower color and that UV reflection drove a shift in the pollination system of P. rhoeas that facilitated its spread across Europe.

20.
Faraday Discuss ; 223: 98-106, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32719835

RESUMO

The majority of angiosperms have flowers with conical epidermal cells, which are assumed to have various functions, such as enhancing the visual signal to pollinators, but detailed optical studies on how conical epidermal cells determine the flower's visual appearance are scarce. Here we report that conical epidermal cells of Mandevilla sanderi flowers effectively reduce surface gloss and create a velvety appearance. Owing to the reduction in surface gloss, the flower further makes more efficient use of floral pigments and light scattering structures inside the flower. The interior backscattering yields a cosine angular dependence of reflected light, meaning that the flowers approximate near-perfect (Lambertian) diffusers, creating a visual signal that is visible across a wide angular space. Together with the large flowers and the tilted corolla tips, this generates a distinct visual pattern, which may enhance the visibility to pollinators.


Assuntos
Cor , Flores/química , Magnoliopsida/química , Células Epidérmicas/química , Flores/citologia , Magnoliopsida/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA