Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Anal Chim Acta ; 736: 30-5, 2012 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-22769002

RESUMO

The analysis of radiotracers is important in the study of oil reservoir dynamics. One of the most widely used radiotracer is S(14)CN(-). Prior to activity measurements by Liquid Scintillation (LS), routine determinations require the pretreatment steps of purification and concentration of the samples using anion exchange columns. The final elution media produces samples with high salt concentration that may lead to problems with phase separation during the LS measurement. Plastic Scintillation (PS) is an alternative technique that provides a solid surface that can be used as a platform for the immobilisation of selective extractants to obtain a PS resin. The proposed procedure unifies chemical separation and sample measurement preparation in a single step, serving to reduce the number of reagents needed and manpower required for the analysis while also avoiding mixed waste production by LS. The objective of this study is to develop a PS resin for the determination of (14)C-labelled thiocyanate radiotracer in water samples. For this purpose, the immobilisation procedure was optimised, including optimisation of the proportion of PS microspheres:extractant and the use of a control blank to monitor the PS resin immobilisation process. The breakthrough volume was studied and the detection and quantification limits for 100 mL of sample were determined to be 0.08 Bq L(-1) and 0.31 Bq L(-1), respectively. The established procedure was applied to active samples from oil reservoirs and errors lower than 5% in the sample determinations were obtained.

2.
Phys Rev Lett ; 105(18): 182701, 2010 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-21231101

RESUMO

The new, neutron-deficient, superheavy element isotope ²85114 was produced in 48Ca irradiations of ²4²Pu targets at a center-of-target beam energy of 256 MeV (E*=50 MeV). The α decay of ²85114was followed by the sequential α decay of four daughter nuclides, 281Cn, 277Ds, 273Hs, and 269Sg. 265Rf was observed to decay by spontaneous fission. The measured α-decay Q values were compared with those from a macroscopic-microscopic nuclear mass model to give insight into superheavy element shell effects. The²4²Pu (48Ca,5n²)²85114 cross section was 0.6(-0.5)+0.9 pb.

3.
Phys Rev Lett ; 103(13): 132502, 2009 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-19905506

RESUMO

Independent verification of the production of element 114 in the reaction of 244-MeV ;{48}Ca with ;{242}Pu is presented. Two chains of time- and position-correlated decays have been assigned to ;{286}114 and ;{287}114. The observed decay modes, half-lives, and decay energies agree with published results. The measured cross sections at a center-of-target energy of 244 MeV for the ;{242}Pu(;{48}Ca,3-4n);{287,286}114 reactions were 1.4_{-1.2};{+3.2} pb each, which are lower than the reported values.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA