Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Exp Hematol ; 130: 104131, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38000729

RESUMO

Age-associated clonal hematopoiesis (CH) occurs due to somatic mutations accrued in hematopoietic stem cells (HSCs) that confer a selective growth advantage in the context of aging. The mechanisms by which CH-mutant HSCs gain this advantage with aging are not comprehensively understood. Using unbiased transcriptomic approaches, we identified Oncostatin M (OSM) signaling as a candidate contributor to age-related Dnmt3a-mutant CH. We found that Dnmt3a-mutant HSCs from young adult mice (3-6 months old) subjected to acute OSM stimulation do not demonstrate altered proliferation, apoptosis, hematopoietic engraftment, or myeloid differentiation. Dnmt3a-mutant HSCs from young mice do transcriptionally upregulate an inflammatory cytokine network in response to acute in vitro OSM stimulation as evidenced by significant upregulation of the genes encoding IL-6, IL-1ß, and TNFα. OSM-stimulated Dnmt3a-mutant HSCs also demonstrate upregulation of the anti-inflammatory genes Socs3, Atf3, and Nr4a1. In the context of an aged bone marrow (BM) microenvironment, Dnmt3a-mutant HSCs upregulate proinflammatory genes but not the anti-inflammatory genes Socs3, Atf3, and Nr4a1. The results from our studies suggest that aging may exhaust the regulatory mechanisms that HSCs employ to resolve inflammatory states in response to factors such as OSM.


Assuntos
Medula Óssea , Células-Tronco Hematopoéticas , Animais , Camundongos , Anti-Inflamatórios , Hematopoese/genética , Oncostatina M/genética
2.
bioRxiv ; 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37502912

RESUMO

Age-associated clonal hematopoiesis (CH) occurs due to somatic mutations accrued in hematopoietic stem cells (HSCs) that confer a selective advantage in the context of aging. The mechanisms by which CH-mutant HSCs gain this advantage with aging are not comprehensively understood. Using unbiased transcriptomic approaches, we identify Oncostatin M (OSM) signaling as a candidate contributor to aging-driven Dnmt3a -mutant CH. We find that Dnmt3a -mutant HSCs from young mice do not functionally respond to acute OSM stimulation with respect to proliferation, apoptosis, hematopoietic engraftment, or myeloid differentiation. However, young Dnmt3a -mutant HSCs transcriptionally upregulate an inflammatory cytokine network in response to acute OSM stimulation including genes encoding IL-6, IL-1ß and TNFα. In addition, OSM-stimulated Dnmt3a -mutant HSCs upregulate the anti-inflammatory genes Socs3, Atf3 and Nr4a1 , creating a negative feedback loop limiting sustained activation of the inflammatory network. In the context of an aged bone marrow (BM) microenvironment with chronically elevated levels of OSM, Dnmt3a -mutant HSCs upregulate pro-inflammatory genes but do not upregulate Socs3, Atf3 and Nr4a1 . Together, our work suggests that chronic inflammation with aging exhausts the regulatory mechanisms in young CH-mutant HSCs that resolve inflammatory states, and that OSM is a master regulator of an inflammatory network that contributes to age-associated CH.

3.
Front Pharmacol ; 13: 980723, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263130

RESUMO

Background: Critically ill patients on supplemental oxygen therapy eventually develop acute lung injury (ALI). Reactive oxygen species (ROS) produced during ALI perturbs the mitochondrial dynamics resulting in cellular damage. Genetic deletion of the mitochondrial A-kinase anchoring protein 1 (Akap1) in mice resulted in mitochondrial damage, Endoplasmic reticulum (ER) stress, increased expression of mitophagy proteins and pro-inflammatory cytokines, exacerbating hyperoxia-induced Acute Lung Injury (HALI). Objective: Despite a strong causal link between mitochondrial dysfunction and HALI, the mechanisms governing the disease progression at the transcriptome level is unknown. Methods: In this study, RNA sequencing (RNA-seq) analysis was carried out using the lungs of Akap1 knockout (Akap1 -/-) mice exposed to normoxia or 48 h of hyperoxia followed by quantitative real time PCR and Ingenuity pathway analysis (IPA). Western blot analysis assessed mitochondrial dysfunction, OXPHOS complex (I-V), apoptosis and antioxidant proteins. Mitochondrial enzymatic assays was used to measure the aconitase, fumarase, citrate synthase activities in isolated mitochondria from Akap1 -/- vs. Wt mice exposed to hyperoxia. Results: Transcriptome analysis of Akap1 -/- exposed to hyperoxia reveals increases in transcripts encoding electron transport chain (ETC) and tricarboxylic acid cycle (TCA) proteins. Ingenuity pathway analysis (IPA) shows enrichment of mitochondrial dysfunction and oxidative phosphorylation in Akap1 -/- mice. Loss of AKAP1, coupled with oxidant injury, significantly decreases the activities of TCA enzymes. Mechanistically, a significant loss of dynamin-related protein 1 (Drp1) phosphorylation at the protein kinase A (PKA) site Serine 637 (Ser637), decreases in Akt phosphorylation at Serine 437 (Ser47) and increase in the expression of pro-apoptotic protein Bax indicate mitochondrial dysfunction. Heme oxygenase-1 (HO-1) levels significantly increased in CD68 positive alveolar macrophages in Akap1 -/- lungs, suggesting a strong antioxidant response to hyperoxia. Conclusion: Overall these results suggest that AKAP1 overexpression and modulation of Drp1 phosphorylation at Ser637 is an important therapeutic strategy for acute lung injury.

4.
Cancer Discov ; 12(12): 2763-2773, 2022 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-36169447

RESUMO

Clonal hematopoiesis resulting from the enhanced fitness of mutant hematopoietic stem cells (HSC) associates with both favorable and unfavorable health outcomes related to the types of mature mutant blood cells produced, but how this lineage output is regulated is unclear. Using a mouse model of a clonal hematopoiesis-associated mutation, DNMT3AR882/+ (Dnmt3aR878H/+), we found that aging-induced TNFα signaling promoted the selective advantage of mutant HSCs and stimulated the production of mutant B lymphoid cells. The genetic loss of the TNFα receptor TNFR1 ablated the selective advantage of mutant HSCs without altering their lineage output, whereas the loss of TNFR2 resulted in the overproduction of mutant myeloid cells without altering HSC fitness. These results nominate TNFR1 as a target to reduce clonal hematopoiesis and the risk of associated diseases and support a model in which clone size and mature blood lineage production can be independently controlled to modulate favorable and unfavorable clonal hematopoiesis outcomes. SIGNIFICANCE: Through the identification and dissection of TNFα signaling as a key driver of murine Dnmt3a-mutant hematopoiesis, we report the discovery that clone size and production of specific mature blood cell types can be independently regulated. See related commentary by Niño and Pietras, p. 2724. This article is highlighted in the In This Issue feature, p. 2711.


Assuntos
Hematopoiese Clonal , Receptores Tipo I de Fatores de Necrose Tumoral , Animais , Camundongos , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/metabolismo , Hematopoese/genética , Células-Tronco Hematopoéticas/metabolismo , Linhagem da Célula/genética
5.
Biomolecules ; 12(2)2022 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-35204783

RESUMO

Abnormalities in airway epithelia and lung parenchyma are found in Atp8b1 mutant mice, which develop pulmonary fibrosis after hyperoxic insult. Microarray and ingenuity pathway analysis (IPA) show numerous transcripts involved in ciliogenesis are downregulated in 14-month (14 M) -old Atp8b1 mouse lung compared with wild-type C57BL/6. Lung epithelium of Atp8b1 mice demonstrate apical abnormalities of ciliated and club cells in the bronchial epithelium on transmission electron microscopy (TEM). Matrix metalloproteinase 7 (MMP7) regulates of ciliogenesis and is a biomarker for idiopathic pulmonary fibrosis (IPF) in humans. Mmp7 transcript and protein expression are significantly upregulated in 14 M Atp8b1 mutant mouse lung. MMP7 expression is also increased in bronchoalveolar lavage fluid (BAL). Immunohistochemistry is localized MMP7 to bronchial epithelial cells in the Atp8b1 mutant. In conclusion, MMP7 is upregulated in the aged Atp8b1 mouse model, which displays abnormal ciliated cell and club cell morphology. This mouse model can facilitate the exploration of the role of MMP7 in epithelial integrity and ciliogenesis in IPF. The Atp8b1 mutant mouse is proposed as a model for IPF.


Assuntos
Adenosina Trifosfatases , Fibrose Pulmonar Idiopática , Metaloproteinase 7 da Matriz , Proteínas de Transferência de Fosfolipídeos , Adenosina Trifosfatases/metabolismo , Animais , Líquido da Lavagem Broncoalveolar , Fibrose Pulmonar Idiopática/enzimologia , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/metabolismo , Metaloproteinase 7 da Matriz/genética , Metaloproteinase 7 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Proteínas de Transferência de Fosfolipídeos/metabolismo
6.
J Cell Biol ; 220(11)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34515734

RESUMO

Micronuclei, whole or fragmented chromosomes spatially separated from the main nucleus, are associated with genomic instability and have been identified as drivers of tumorigenesis. Paradoxically, Kif18a mutant mice produce micronuclei due to asynchronous segregation of unaligned chromosomes in vivo but do not develop spontaneous tumors. We report here that micronuclei in Kif18a mutant mice form stable nuclear envelopes. Challenging Kif18a mutant mice via deletion of the Trp53 gene led to formation of thymic lymphoma with elevated levels of micronuclei. However, loss of Kif18a had modest or no effect on survival of Trp53 homozygotes and heterozygotes, respectively. Micronuclei in cultured KIF18A KO cells form stable nuclear envelopes characterized by increased recruitment of nuclear envelope components and successful expansion of decondensing chromatin compared with those induced by nocodazole washout or radiation. Lagging chromosomes were also positioned closer to the main chromatin masses in KIF18A KO cells. These data suggest that not all micronuclei actively promote tumorigenesis.


Assuntos
Carcinogênese/genética , Núcleo Celular/genética , Cinesinas/genética , Membrana Nuclear/genética , Animais , Linhagem Celular , Cromatina/genética , Cromossomos/genética , Dano ao DNA/genética , Feminino , Instabilidade Genômica/genética , Humanos , Masculino , Camundongos
7.
Aging Cell ; 20(5): e13328, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33788371

RESUMO

In genetically heterogeneous mice produced by the CByB6F1 x C3D2F1 cross, the "non-feminizing" estrogen, 17-α-estradiol (17aE2), extended median male lifespan by 19% (p < 0.0001, log-rank test) and 11% (p = 0.007) when fed at 14.4 ppm starting at 16 and 20 months, respectively. 90th percentile lifespans were extended 7% (p = 0.004, Wang-Allison test) and 5% (p = 0.17). Body weights were reduced about 20% after starting the 17aE2 diets. Four other interventions were tested in males and females: nicotinamide riboside, candesartan cilexetil, geranylgeranylacetone, and MIF098. Despite some data suggesting that nicotinamide riboside would be effective, neither it nor the other three increased lifespans significantly at the doses tested. The 17aE2 results confirm and extend our original reports, with very similar results when started at 16 months compared with mice started at 10 months of age in a prior study. The consistently large lifespan benefit in males, even when treatment is started late in life, may provide information on sex-specific aspects of aging.


Assuntos
Estradiol/farmacologia , Longevidade/efeitos dos fármacos , Envelhecimento , Animais , Feminino , Masculino , Camundongos , Niacinamida/análogos & derivados , Niacinamida/farmacologia , Compostos de Piridínio/farmacologia , Caracteres Sexuais
8.
BMC Genet ; 21(1): 101, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32907542

RESUMO

BACKGROUND: The complement cascade is increasingly implicated in development of a variety of diseases with strong immune contributions such as Alzheimer's disease and Systemic Lupus Erythematosus. Mouse models have been used to determine function of central components of the complement cascade such as C1q and C3. However, species differences in their gene structures mean that mice do not adequately replicate human complement regulators, including CR1 and CR2. Genetic variation in CR1 and CR2 have been implicated in modifying disease states but the mechanisms are not known. RESULTS: To decipher the roles of human CR1 and CR2 in health and disease, we engineered C57BL/6J (B6) mice to replace endogenous murine Cr2 with human complement receptors, CR1 and CR2 (B6.CR2CR1). CR1 has an array of allotypes in human populations and using traditional recombination methods (Flp-frt and Cre-loxP) two of the most common alleles (referred to here as CR1long and CR1short) can be replicated within this mouse model, along with a CR1 knockout allele (CR1KO). Transcriptional profiling of spleens and brains identified genes and pathways differentially expressed between mice homozygous for either CR1long, CR1short or CR1KO. Gene set enrichment analysis predicts hematopoietic cell number and cell infiltration are modulated by CR1long, but not CR1short or CR1KO. CONCLUSION: The B6.CR2CR1 mouse model provides a novel tool for determining the relationship between human-relevant CR1 alleles and disease.


Assuntos
Receptores de Complemento 3b/genética , Receptores de Complemento 3d/genética , Alelos , Animais , Modelos Animais de Doenças , Feminino , Homozigoto , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Regiões Promotoras Genéticas , Transcriptoma
9.
Exp Mol Pathol ; 110: 104286, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31323190

RESUMO

Psoriasis (PS) is a common inflammatory and incurable skin disease affecting 2-3% of the human population. Although genome-wide association studies implicate more than 60 loci, the full complement of genetic factors leading to disease is not known. Rare, highly penetrant, gain-of-function, dominantly acting mutations within the human caspase recruitment domain family, member 14 (CARD14) gene lead to the development of PS and psoriatic arthritis (PSA) (a familial p.G117S and de-novo p.E138A alteration). These residues are conserved in mouse and orthologous Knock-In (KI) mutations within Card14 were created. The Card14tm.1.1Sun allele (G117S) resulted in no clinically or histologically evident phenotype of the skin or joints in young adult or old mice. However, mice carrying the Card14tm2.1Sun mutant allele (E138A) were runted and developed thick, white, scaly skin soon after birth, dying within two weeks or less. The skin hyperplasia and inflammation was remarkable similarity to human PS at the clinical, histological, and transcriptomic levels. For example, the skin was markedly acanthotic and exhibited orthokeratotic hyperkeratosis with minimal inflammation and no pustules and transcripts affecting critical pathways of epidermal differentiation and components of the IL17 axis (IL23, IL17A, IL17C, TNF and IL22) were altered. Similar changes were seen in a set of orthologous microRNAs previously associated with PS suggesting conservation across species. Crossing the Card14tm2.1Sun/WT mice to C57BL/6NJ, FVB/NJ, CBA/J, C3H/HeJ, and 129S1/SvImJ generated progeny with epidermal acanthosis and marked orthokeratotic hyperkeratosis regardless of the hybrid strain. Of these hybrid lines, only the FVB;B6N(129S4) mice survived to 250 days of age or older and has led to recombinant inbred lines homozygous for Card14E138A that are fecund and have scaly skin disease. This implicates that modifiers of PS severity exist in mice, as in the familial forms of the disease in humans.


Assuntos
Proteínas Adaptadoras de Sinalização CARD/genética , Proteínas Adaptadoras de Sinalização CARD/fisiologia , Mutação com Ganho de Função , Genes Modificadores , Guanilato Ciclase/genética , Guanilato Quinases/fisiologia , Inflamação/genética , Proteínas de Membrana/genética , Psoríase/genética , Dermatopatias/genética , Animais , Feminino , Técnicas de Introdução de Genes , Humanos , Inflamação/patologia , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Knockout , Psoríase/patologia , Índice de Gravidade de Doença , Dermatopatias/patologia , Transcriptoma
10.
J Invest Dermatol ; 139(12): 2447-2457.e7, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31207231

RESUMO

Pseudoxanthoma elasticum, a prototype of heritable multisystem ectopic mineralization disorders, is caused by mutations in the ABCC6 gene encoding a putative efflux transporter, ABCC6. The phenotypic spectrum of pseudoxanthoma elasticum varies, and the correlation between genotype and phenotype has not been established. To identify genetic modifiers, we performed quantitative trait locus analysis in inbred mouse strains that carry the same hypomorphic allele in Abcc6 yet with highly variable ectopic mineralization phenotypes of pseudoxanthoma elasticum. Abcc6 was confirmed as a major determinant for ectopic mineralization in multiple tissues. Integrative analysis using functional genomics tools that included GeneWeaver, String, and Mouse Genome Informatics identified a total of nine additional candidate modifier genes that could influence the organ-specific ectopic mineralization phenotypes. Integration of the candidate genes into the existing ectopic mineralization gene network expands the current knowledge on the complexity of the network that, as a whole, governs ectopic mineralization in soft connective tissues.


Assuntos
DNA/genética , Genes Modificadores/genética , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Animais , Modelos Animais de Doenças , Feminino , Genótipo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Fenótipo , Pseudoxantoma Elástico/genética
11.
PeerJ ; 7: e6586, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30944774

RESUMO

In this study, we investigated the impact of initial tumor volume, rate of tumor growth, cohort size, study duration, and data analysis method on chemotherapy treatment response classifications in patient-derived xenografts (PDXs). The analyses were conducted on cisplatin treatment response data for 70 PDX models representing ten cancer types with up to 28-day study duration and cohort sizes of 3-10 tumor-bearing mice. The results demonstrated that a 21-day dosing study using a cohort size of eight was necessary to reliably detect responsive models (i.e., tumor volume ratio of treated animals to control between 0.1 and 0.42)-independent of analysis method. A cohort of three tumor-bearing animals led to a reliable classification of models that were both highly responsive and highly nonresponsive to cisplatin (i.e., tumor volume ratio of treated animals to control animals less than 0.10). In our set of PDXs, we found that tumor growth rate in the control group impacted treatment response classification more than initial tumor volume. We repeated the study design factors using docetaxel treated PDXs with consistent results. Our results highlight the importance of defining endpoints for PDX dosing studies when deciding the size of cohorts to use in dosing studies and illustrate that response classifications for a study do not differ significantly across the commonly used analysis methods that are based on tumor volume changes in treatment versus control groups.

12.
Aging Cell ; 18(3): e12953, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30916479

RESUMO

Diets low in methionine extend lifespan of rodents, though through unknown mechanisms. Glycine can mitigate methionine toxicity, and a small prior study has suggested that supplemental glycine could extend lifespan of Fischer 344 rats. We therefore evaluated the effects of an 8% glycine diet on lifespan and pathology of genetically heterogeneous mice in the context of the Interventions Testing Program. Elevated glycine led to a small (4%-6%) but statistically significant lifespan increase, as well as an increase in maximum lifespan, in both males (p = 0.002) and females (p < 0.001). Pooling across sex, glycine increased lifespan at each of the three independent sites, with significance at p = 0.01, 0.053, and 0.03, respectively. Glycine-supplemented females were lighter than controls, but there was no effect on weight in males. End-of-life necropsies suggested that glycine-treated mice were less likely than controls to die of pulmonary adenocarcinoma (p = 0.03). Of the 40 varieties of incidental pathology evaluated in these mice, none were increased to a significant degree by the glycine-supplemented diet. In parallel analyses of the same cohort, we found no benefits from TM5441 (an inhibitor of PAI-1, the primary inhibitor of tissue and urokinase plasminogen activators), inulin (a source of soluble fiber), or aspirin at either of two doses. Our glycine results strengthen the idea that modulation of dietary amino acid levels can increase healthy lifespan in mice, and provide a foundation for further investigation of dietary effects on aging and late-life diseases.


Assuntos
Envelhecimento/metabolismo , Suplementos Nutricionais , Glicina/farmacologia , Longevidade/efeitos dos fármacos , Adenomatose Pulmonar/epidemiologia , Envelhecimento/efeitos dos fármacos , Animais , Aspirina/farmacologia , Dieta , Feminino , Inulina/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Piperazinas/farmacologia , para-Aminobenzoatos/farmacologia
13.
Exp Mol Pathol ; 102(2): 337-346, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28268192

RESUMO

Rhomboid family protein RHBDF2, an upstream regulator of the epidermal growth factor (EGF) receptor signaling, has been implicated in cutaneous wound healing. However, the underlying molecular mechanisms are still emerging. In humans, a gain-of-function mutation in the RHBDF2 gene accelerates cutaneous wound healing in an EGFR-dependent manner. Likewise, a gain-of-function mutation in the mouse Rhbdf2 gene (Rhbdf2cub/cub) shows a regenerative phenotype (rapid ear-hole closure) resulting from constitutive activation of the EGFR pathway. Because the RHBDF2-regulated EGFR pathway is relevant to cutaneous wound healing in humans, we used Rhbdf2cub/cub mice to investigate the biological networks and pathways leading to accelerated ear-hole closure, with the goal of identifying therapeutic targets potentially effective in promoting wound healing in humans. Comparative transcriptome analysis of ear pinna tissue from Rhbdf2cub/cub and Rhbdf2+/+ mice at 0h, 15min, 2h, and 24h post-wounding revealed an early induction of the nuclear factor E2-related factor 2 (NRF2)-mediated anti-oxidative pathway (0h and 15min), followed by the integrin-receptor aggregation pathway (2h) as early-stage events immediately and shortly after wounding in Rhbdf2cub/cub mice. Additionally, we observed genes enriched for the Fc fragment of the IgG receptor IIIa (FCGR3A)-mediated phagocytosis pathway 24h post-wounding. Although cutaneous wound repair in healthy individuals is generally non-problematic, it can be severely impaired due to aging, diabetes, and chronic inflammation. This study suggests that activation of the NRF2-antioxidant pathway by rhomboid protein RHBDF2 might be beneficial in treating chronic non-healing wounds.


Assuntos
Antioxidantes , Proteínas de Transporte/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Cicatrização , Animais , Proteínas de Transporte/genética , Modelos Animais de Doenças , Orelha/lesões , Receptores ErbB/genética , Receptores ErbB/metabolismo , Perfilação da Expressão Gênica , Imunoglobulina G/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Estresse Oxidativo , Fenótipo , Fosforilação , Receptores de IgG/genética , Receptores de IgG/metabolismo , Regeneração , Transdução de Sinais
14.
Exp Dermatol ; 26(9): 820-822, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28094869

RESUMO

Mice with mutations in SHANK-associated RH domain interactor (Sharpin) develop a hypereosinophilic auto-inflammatory disease known as chronic proliferative dermatitis. Affected mice have increased apoptosis in the keratinocytes of the skin, oesophagus and forestomach driven by extrinsic TNF receptor-mediated apoptotic signalling pathways. FAS receptor signalling is an extrinsic apoptotic signalling mechanism frequently involved in inflammatory skin diseases. Compound mutations in Sharpin and Fas or Fasl were created to determine whether these death domain proteins influenced the cutaneous phenotype in Sharpin null mice. Both Sharpin/Fas and Sharpin/Fasl compound mutant mice developed an auto-inflammatory phenotype similar to that seen in Sharpin null mice, indicating that initiation of apoptosis by FAS signalling is likely not involved in the pathogenesis of this disease.


Assuntos
Proteínas de Transporte/fisiologia , Proteína Ligante Fas/metabolismo , Queratinócitos/fisiologia , Dermatopatias/etiologia , Receptor fas/metabolismo , Animais , Apoptose , Proteína Ligante Fas/genética , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Fator de Necrose Tumoral alfa/metabolismo , Receptor fas/genética
15.
Aging (Albany NY) ; 8(9): 2232-2252, 2016 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-27689529

RESUMO

OBJECTIVE: Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. METHODS: We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). RESULTS: Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. CONCLUSION: Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases.


Assuntos
Adenosina Trifosfatases/genética , Envelhecimento/genética , Pulmão/metabolismo , Proteínas de Transferência de Fosfolipídeos/genética , Proteínas ADAMTS/genética , Proteínas ADAMTS/metabolismo , Adenosina Trifosfatases/metabolismo , Envelhecimento/metabolismo , Animais , Perfilação da Expressão Gênica , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 13 da Matriz/metabolismo , Camundongos , Camundongos Transgênicos , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Transferência de Fosfolipídeos/metabolismo , Transcriptoma
16.
Exp Mol Pathol ; 101(3): 303-307, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27794420

RESUMO

Angiogenesis is a common feature of pathological processes including wound healing, tumor formation, and chronic inflammation. Chronic inflammation can also be associated with dilation or proliferation of lymph vessels. We examined blood vessels and lymphatics and the expression of pro- and anti-angiogenic genes in the skin of SHARPIN-deficient mice which spontaneously develop a chronic proliferative dermatitis (cpdm). The number of blood vessels in the dermis of cpdm mice increased with age as the inflammation progressed. Lymphatics identified by labeling for LYVE1 and podoplanin were moderately dilated, but they were not increased in number. The expression of proangiogenic Vegfa, Flt1 and anti-angiogenic Sema3a mRNA was increased. VEGFA was primarily localized in keratinocytes of cpdm skin. There was also increased expression of Ece1 and Pdpn mRNA. Podoplanin was restricted to lymphatic endothelial cells in normal skin, but fibroblasts in cpdm skin also reacted with anti-podoplanin antibodies indicating that they were activated. The expression of other angiogenic and lymphangiogenic factors was not altered or decreased. These results indicate that cpdm mice may be a useful model to study the pathogenesis of angiogenesis in chronic inflammation.


Assuntos
Proteínas de Transporte/genética , Dermatite/metabolismo , Neovascularização Patológica/metabolismo , Pele/irrigação sanguínea , Animais , Dermatite/patologia , Células Endoteliais/metabolismo , Enzimas Conversoras de Endotelina/genética , Enzimas Conversoras de Endotelina/metabolismo , Feminino , Fibroblastos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular , Queratinócitos/metabolismo , Vasos Linfáticos/patologia , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana Transportadoras , Camundongos , Camundongos Endogâmicos C57BL , Semaforina-3A/genética , Semaforina-3A/metabolismo , Pele/citologia , Pele/metabolismo , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/genética , Receptor 1 de Fatores de Crescimento do Endotélio Vascular/metabolismo
17.
Exp Mol Pathol ; 100(2): 332-6, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26960166

RESUMO

Mouse models of various types of inflammatory skin disease are often accompanied by increased dermal angiogenesis. The C3H/HeJ inbred strain spontaneously develops alopecia areata (AA), a cell mediated autoimmune disorder that can be controllably expanded using full thickness skin grafts to young unaffected mice. This provides a reproducible and progressive model for AA in which the vascularization of the skin can be examined. Mice receiving skin grafts from AA or normal mice were evaluated at 5, 10, 15, and 20 weeks after engraftment. Lymphatics are often overlooked as they are small slit-like structures above the hair follicle that resemble artifact-like separation of collagen bundles with some fixatives. Lymphatics are easily detected using lymphatic vessel endothelial hyaluronan receptor 1 (LYVE1) by immunohistochemistry to label their endothelial cells. Using LYVE1, there were no changes in distribution or numbers of lymphatics although they were more prominent (dilated) in the mice with AA. Lyve1 transcripts were not significantly upregulated except at 10 weeks after skin grafting when clinical signs of AA first become apparent. Other genes involved with vascular growth and dilation or movement of immune cells were dysregulated, mostly upregulated. These findings emphasize aspects of AA not commonly considered and provide potential targets for therapeutic intervention.


Assuntos
Alopecia em Áreas/patologia , Modelos Animais de Doenças , Sistema Linfático/patologia , Pele/patologia , Alopecia em Áreas/genética , Alopecia em Áreas/metabolismo , Animais , Perfilação da Expressão Gênica/métodos , Glicoproteínas/genética , Glicoproteínas/metabolismo , Folículo Piloso/irrigação sanguínea , Folículo Piloso/metabolismo , Folículo Piloso/patologia , Imuno-Histoquímica , Sistema Linfático/metabolismo , Vasos Linfáticos/metabolismo , Vasos Linfáticos/patologia , Proteínas de Membrana Transportadoras , Camundongos Endogâmicos C3H , Análise de Sequência com Séries de Oligonucleotídeos , Pele/irrigação sanguínea , Pele/metabolismo , Transplante de Pele/métodos , Fatores de Tempo
18.
Oncotarget ; 6(34): 35726-36, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26486088

RESUMO

RNA editing is a post-transcriptional modification of RNA. The majority of these changes result from adenosine deaminase acting on RNA (ADARs) catalyzing the conversion of adenosine residues to inosine in double-stranded RNAs (dsRNAs). Massively parallel sequencing has enabled the identification of RNA editing sites in human transcriptomes. In this study, we sequenced DNA and RNA from human lungs and identified RNA editing sites with high confidence via a computational pipeline utilizing stringent analysis thresholds. We identified a total of 3,447 editing sites that overlapped in three human lung samples, and with 50% of these sites having canonical A-to-G base changes. Approximately 27% of the edited sites overlapped with Alu repeats, and showed A-to-G clustering (>3 clusters in 100 bp). The majority of edited sites mapped to either 3' untranslated regions (UTRs) or introns close to splice sites; whereas, only few sites were in exons resulting in non-synonymous amino acid changes. Interestingly, we identified 652 A-to-G editing events in the 3' UTR of 205 target genes that mapped to 932 potential miRNA target binding sites. Several of these miRNA edited sites were validated in silico. Additionally, we validated several A-to-G edited sites by Sanger sequencing. Altogether, our study suggests a role for RNA editing in miRNA-mediated gene regulation and splicing in human lungs. In this study, we have generated a RNA editome of human lung tissue that can be compared with other RNA editomes across different lung tissues to delineate a role for RNA editing in normal and diseased states.


Assuntos
DNA/análise , Pneumopatias/diagnóstico , Pulmão/fisiologia , MicroRNAs/genética , RNA/análise , Regiões 3' não Traduzidas/genética , Adenina , Adenosina Desaminase/metabolismo , Elementos Alu/genética , Biologia Computacional , Guanosina , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Pneumopatias/genética , Edição de RNA , Transcriptoma
19.
Exp Mol Pathol ; 97(3): 525-8, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25446841

RESUMO

Alopecia areata (AA), a cell mediated autoimmune disease, is the second most common form of hair loss in humans. While the autoimmune disease is responsible for the underlying pathogenesis, the alopecia phenotype is ultimately due to hair shaft fragility and breakage associated with structural deficits. Quantitative trait genetic analyses using the C3H/HeJ mouse AA model identified cysteine-rich secretory protein 1 (Crisp1), a hair shaft structural protein, as a candidate gene within the major AA locus. Crisp1 transcripts in the skin at various times during disease development were barely detectable. In situ hybridization identified Crisp1 expression within the medulla of hair shafts from clinically normal strains of mice but not C3H/HeJ mice with AA. Follow-up work with 5-day-old C3H/HeJ mice with normal hair also had essentially no expression of Crisp1. Other non-inflammatory based follicular dystrophy mouse models with similar hair shaft abnormalities also have little or no Crisp1 expression. Shotgun proteomics, used to determine strain difference in hair proteins, confirmed that there was very little CRISP1 within normal C3H/HeJ mouse hair in comparison to 11 other strains. However, mutant mice with hair medulla defects also had undetectable levels of CRISP1 in their hair. Crisp1 null mice had normal skin, hair follicles, and hair shafts indicating that the lack of the CRISP1 protein does not translate directly into defects in the hair shaft or hair follicle. These results suggest that CRISP1 may be an important structural component of mouse hair and that its strain-specific dysregulation may indicate a predisposition to hair shaft disease such as AA.


Assuntos
Alopecia em Áreas/metabolismo , Cabelo/metabolismo , Glicoproteínas de Membrana/metabolismo , Alopecia em Áreas/genética , Alopecia em Áreas/patologia , Animais , Modelos Animais de Doenças , Cabelo/patologia , Hibridização In Situ , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Análise de Sequência com Séries de Oligonucleotídeos , Reação em Cadeia da Polimerase
20.
PLoS One ; 9(12): e113582, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25474466

RESUMO

Papillomaviruses (PVs) induce papillomas, premalignant lesions, and carcinomas in a wide variety of species. PVs are classified first based on their host and tissue tropism and then their genomic diversities. A laboratory mouse papillomavirus, MmuPV1 (formerly MusPV), was horizontally transmitted within an inbred colony of NMRI-Foxn1(nu)/Foxn1nu (nude; T cell deficient) mice of an unknown period of time. A ground-up, filtered papilloma inoculum was not capable of infecting C57BL/6J wild-type mice; however, immunocompetent, alopecic, S/RV/Cri-ba/ba (bare) mice developed small papillomas at injection sites that regressed. NMRI-Foxn1(nu) and B6.Cg-Foxn1(nu), but not NU/J-Foxn1(nu), mice were susceptible to MmuPV1 infection. B6 congenic strains, but not other congenic strains carrying the same allelic mutations, lacking B- and T-cells, but not B-cells alone, were susceptible to infection, indicating that mouse strain and T-cell deficiency are critical to tumor formation. Lesions initially observed were exophytic papillomas around the muzzle, exophytic papillomas on the tail, and condylomas of the vaginal lining which could be induced by separate scarification or simultaneous scarification of MmuPV1 at all four sites. On the dorsal skin, locally invasive, poorly differentiated tumors developed with features similar to human trichoblastomas. Transcriptome analysis revealed significant differences between the normal skin in these anatomic sites and in papillomas versus trichoblastomas. The primarily dysregulated genes involved molecular pathways associated with cancer, cellular development, cellular growth and proliferation, cell morphology, and connective tissue development and function. Although trichoepitheliomas are benign, aggressive tumors, few of the genes commonly associated with basal cell carcinoma or squamous cells carcinoma were highly dysregulated.


Assuntos
Papiloma/patologia , Papillomaviridae/patogenicidade , Neoplasias Cutâneas/patologia , Idoso , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , DNA Viral/análise , Proteína Quinase Ativada por DNA/deficiência , Proteína Quinase Ativada por DNA/genética , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/deficiência , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Fatores de Transcrição Forkhead/deficiência , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos Nus , Proteínas Nucleares/deficiência , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Papiloma/metabolismo , Papiloma/virologia , Papillomaviridae/genética , Pele/metabolismo , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/virologia , Linfócitos T/imunologia , Linfócitos T/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA