Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Am Med Inform Assoc ; 30(7): 1293-1300, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37192819

RESUMO

Research increasingly relies on interrogating large-scale data resources. The NIH National Heart, Lung, and Blood Institute developed the NHLBI BioData CatalystⓇ (BDC), a community-driven ecosystem where researchers, including bench and clinical scientists, statisticians, and algorithm developers, find, access, share, store, and compute on large-scale datasets. This ecosystem provides secure, cloud-based workspaces, user authentication and authorization, search, tools and workflows, applications, and new innovative features to address community needs, including exploratory data analysis, genomic and imaging tools, tools for reproducibility, and improved interoperability with other NIH data science platforms. BDC offers straightforward access to large-scale datasets and computational resources that support precision medicine for heart, lung, blood, and sleep conditions, leveraging separately developed and managed platforms to maximize flexibility based on researcher needs, expertise, and backgrounds. Through the NHLBI BioData Catalyst Fellows Program, BDC facilitates scientific discoveries and technological advances. BDC also facilitated accelerated research on the coronavirus disease-2019 (COVID-19) pandemic.


Assuntos
COVID-19 , Computação em Nuvem , Humanos , Ecossistema , Reprodutibilidade dos Testes , Pulmão , Software
2.
JAMIA Open ; 3(3): 413-421, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33215076

RESUMO

OBJECTIVE: To advance use of real-world data (RWD) for pharmacovigilance, we sought to integrate a high-sensitivity natural language processing (NLP) pipeline for detecting potential adverse drug events (ADEs) with easily interpretable output for high-efficiency human review and adjudication of true ADEs. MATERIALS AND METHODS: The adverse drug event presentation and tracking (ADEPT) system employs an open source NLP pipeline to identify in clinical notes mentions of medications and signs and symptoms potentially indicative of ADEs. ADEPT presents the output to human reviewers by highlighting these drug-event pairs within the context of the clinical note. To measure incidence of seizures associated with sildenafil, we applied ADEPT to 149 029 notes for 982 patients with pediatric pulmonary hypertension. RESULTS: Of 416 patients identified as taking sildenafil, NLP found 72 [17%, 95% confidence interval (CI) 14-21] with seizures as a potential ADE. Upon human review and adjudication, only 4 (0.96%, 95% CI 0.37-2.4) patients with seizures were determined to have true ADEs. Reviewers using ADEPT required a median of 89 s (interquartile range 57-142 s) per patient to review potential ADEs. DISCUSSION: ADEPT combines high throughput NLP to increase sensitivity of ADE detection and human review, to increase specificity by differentiating true ADEs from signs and symptoms related to comorbidities, effects of other medications, or other confounders. CONCLUSION: ADEPT is a promising tool for creating gold standard, patient-level labels for advancing NLP-based pharmacovigilance. ADEPT is a potentially time savings platform for computer-assisted pharmacovigilance based on RWD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA