Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 308(11): C919-31, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25810257

RESUMO

Myoblast fusion is critical for proper muscle growth and regeneration. During myoblast fusion, the localization of some molecules is spatially restricted; however, the exact reason for such localization is unknown. Creatine kinase B (CKB), which replenishes local ATP pools, localizes near the ends of cultured primary mouse myotubes. To gain insights into the function of CKB, we performed a yeast two-hybrid screen to identify CKB-interacting proteins. We identified molecules with a broad diversity of roles, including actin polymerization, intracellular protein trafficking, and alternative splicing, as well as sarcomeric components. In-depth studies of α-skeletal actin and α-cardiac actin, two predominant muscle actin isoforms, demonstrated their biochemical interaction and partial colocalization with CKB near the ends of myotubes in vitro. In contrast to other cell types, specific knockdown of CKB did not grossly affect actin polymerization in myotubes, suggesting other muscle-specific roles for CKB. Interestingly, knockdown of CKB resulted in significantly increased myoblast fusion and myotube size in vitro, whereas knockdown of creatine kinase M had no effect on these myogenic parameters. Our results suggest that localized CKB plays a key role in myotube formation by limiting myoblast fusion during myogenesis.


Assuntos
Creatina Quinase Forma BB/genética , Desenvolvimento Muscular/genética , Fibras Musculares Esqueléticas/enzimologia , Mioblastos/enzimologia , Actinas/genética , Actinas/metabolismo , Processamento Alternativo , Animais , Fusão Celular , Creatina Quinase Forma BB/antagonistas & inibidores , Creatina Quinase Forma BB/metabolismo , Creatina Quinase Forma MM/genética , Creatina Quinase Forma MM/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fibras Musculares Esqueléticas/citologia , Mioblastos/citologia , Polimerização , Cultura Primária de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte Proteico , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
2.
J Physiol ; 586(12): 2841-53, 2008 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-18420707

RESUMO

Myoblast fusion is essential for muscle development, postnatal growth and muscle repair after injury. Recent studies have demonstrated roles for actin polymerization during myoblast fusion. Dynamic cytoskeletal assemblies directing cell-cell contact, membrane coalescence and ultimately fusion require substantial cellular energy demands. Various energy generating systems exist in cells but the partitioning of energy sources during myoblast fusion is unknown. Here, we demonstrate a novel role for phosphocreatine (PCr) as a spatiotemporal energy buffer during primary mouse myoblast fusion with nascent myotubes. Creatine treatment enhanced cell fusion in a creatine kinase (CK)-dependent manner suggesting that ATP-consuming reactions are replenished through the PCr/CK system. Furthermore, selective inhibition of actin polymerization prevented myonuclear addition following creatine treatment. As myotube formation is dependent on cytoskeletal reorganization, our findings suggest that PCr hydrolysis is coupled to actin dynamics during myoblast fusion. We conclude that myoblast fusion is a high-energy process, and can be enhanced by PCr buffering of energy demands during actin cytoskeletal rearrangements in myoblast fusion. These findings implicate roles for PCr as a high-energy phosphate buffer in the fusion of multiple cell types including sperm/oocyte, trophoblasts and macrophages. Furthermore, our results suggest the observed beneficial effects of oral creatine supplementation in humans may result in part from enhanced myoblast fusion.


Assuntos
Actinas/fisiologia , Creatina Quinase/metabolismo , Citoesqueleto/fisiologia , Citoesqueleto/ultraestrutura , Mioblastos/citologia , Mioblastos/fisiologia , Fosfocreatina/metabolismo , Transdução de Sinais/fisiologia , Actinas/ultraestrutura , Animais , Fusão Celular , Células Cultivadas , Humanos , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA