Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Chem Commun (Camb) ; 59(72): 10797-10800, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37594190

RESUMO

Cyclisations of benzyl ortho-iodoaryl ethers to benzo[c]chromenes can be effected without reagents or catalysts by irradiation with UVC under flow. Reactions proceed via triplet aryl cation generation, 5-exo and 3-exo-cyclisations, and rearomatisation. They have wide scope, are easy to effect and extend to a myriad of related ring systems.

2.
Int J Mol Sci ; 22(17)2021 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-34502457

RESUMO

(1) Background: The c-Jun-NH2-terminal protein kinase (JNK) is a mitogen-activated protein kinase involved in regulating physiological processes in the central nervous system. However, the dual genetic deletion of Mkk4 and Mkk7 (upstream activators of JNK) in adult mice is not reported. The aim of this study was to induce the genetic deletion of Mkk4/Mkk7 in adult mice and analyze their effect in hippocampal neurogenesis. (2) Methods: To achieve this goal, Actin-CreERT2 (Cre+/-), Mkk4flox/flox, Mkk7flox/flox mice were created. The administration of tamoxifen in these 2-month-old mice induced the gene deletion (Actin-CreERT2 (Cre+/-), Mkk4∆/∆, Mkk7∆/∆ genotype), which was verified by PCR, Western blot, and immunohistochemistry techniques. (3) Results: The levels of MKK4/MKK7 at 7 and 14 days after tamoxifen administration were not eliminated totally in CNS, unlike what happens in the liver and heart. These data could be correlated with the high levels of these proteins in CNS. In the hippocampus, the deletion of Mkk4/Mkk7 induced a misalignment position of immature hippocampal neurons together with alterations in their dendritic architecture pattern and maturation process jointly to the diminution of JNK phosphorylation. (4) Conclusion: All these data supported that the MKK4/MKK7-JNK pathway has a role in adult neurogenic activity.


Assuntos
Hipocampo/fisiologia , MAP Quinase Quinase 4/fisiologia , MAP Quinase Quinase 7/fisiologia , Sistema de Sinalização das MAP Quinases , Neurogênese , Animais , Proteína Duplacortina , Deleção de Genes , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA