Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
1.
J Ethnopharmacol ; 331: 118241, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38670400

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Andrographis paniculata (AP) ((Burm f.) Wall. ex Nees) is a medicinal plant, documented for its folkloric use in the treatment of malaria. AIM: This study was designed to determine the potency of extract and fractions of A. paniculata (AP) as a curative, both for susceptible and resistant malaria and to also determine the plant's mechanism of action. This study was also designed to determine whether AP extract and its most potent fraction will mitigate infection-mediated mitochondrial dysfunction, and to assess the phytochemical constituents of the most potent fraction. MATERIALS AND METHODS: n-Hexane, dichloromethane, ethylacetate and methanol were used to partition the methanol extract of A. paniculata. Graded doses of these extract and fractions were used to treat mice infected with chloroquine-sensitive strain of P. berghei in a curative model. The most potent fraction was used to treat mice infected with resistant (ANKA strain) P. berghei. Inhibition of hemozoin formation, reversal of mitochondrial dysfunction and antiinflammatory potentials were determined. A combination of ultraperformance liquid chromatography-quadrupole time of flight-mass spectrometry and nuclear magnetic resonance spectroscopy were used for chemical analysis. RESULTS: Microscopy revealed that the dichloromethane fraction decreased the parasite burden the most, and inhibition of the hemozoin formation is one of its mechanisms of action. The dichloromethane fraction reversed parasite-induced mitochondrial pore opening in the host, enzyme-dependent ATP hydrolysis and peroxidation of host mitochondrial membrane phospholipids as well as its antiinflammatory potentials. The UPLC-qTOF-MS report and NMR fingerprints of the dichloromethane fraction of A. paniculata yielded fourteen compounds of which sibiricinone C was identified from the plant for the first time. CONCLUSION: Fractions of A. paniculata possess antiplasmodial effects with the dichloromethane fraction having the highest potency. The potent effect of this fraction may be attributed to the phytochemicals present because it contains terpenes implicated with antimalarial and antiinflammatory activities.


Assuntos
Andrographis , Antimaláricos , Malária , Extratos Vegetais , Plasmodium berghei , Animais , Plasmodium berghei/efeitos dos fármacos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Malária/tratamento farmacológico , Malária/parasitologia , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Camundongos , Andrographis/química , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Masculino , Hemeproteínas/metabolismo , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/química , Feminino
2.
Metabolites ; 14(2)2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38393004

RESUMO

Specialized metabolites are produced via discrete metabolic pathways. These small molecules play significant roles in plant growth and development, as well as defense against environmental stresses. These include damping off or seedling blight at a post-emergence stage. Targeted metabolomics was followed to gain insights into metabolome changes characteristic of different developmental stages of sorghum seedlings. Metabolites were extracted from leaves at seven time points post-germination and analyzed using ultra-high performance liquid chromatography coupled to mass spectrometry. Multivariate statistical analysis combined with chemometric tools, such as principal component analysis, hierarchical clustering analysis, and orthogonal partial least squares-discriminant analysis, were applied for data exploration and to reduce data dimensionality as well as for the selection of potential discriminant biomarkers. Changes in metabolome patterns of the seedlings were analyzed in the early, middle, and late stages of growth (7, 14, and 29 days post-germination). The metabolite classes were amino acids, organic acids, lipids, cyanogenic glycosides, hormones, hydroxycinnamic acid derivatives, and flavonoids, with the latter representing the largest class of metabolites. In general, the metabolite content showed an increase with the progression of the plant growth stages. Most of the differential metabolites were derived from tryptophan and phenylalanine, which contribute to innate immune defenses as well as growth. Quantitative analysis identified a correlation of apigenin flavone derivatives with growth stage. Data-driven investigations of these metabolomes provided new insights into the developmental dynamics that occur in seedlings to limit post-germination mortality.

3.
Metabolites ; 13(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37755277

RESUMO

Necrotrophic fungi affect a wide range of plants and cause significant crop losses. For the activation of multi-layered innate immune defences, plants can be primed or pre-conditioned to rapidly and more efficiently counteract this pathogen. Untargeted and targeted metabolomics analyses were applied to elucidate the biochemical processes involved in the response of 3,5-dichloroanthranilic acid (3,5-DCAA) primed barley plants to Pyrenophora teres f. teres (Ptt). A susceptible barley cultivar ('Hessekwa') at the third leaf growth stage was treated with 3,5-DCAA 24 h prior to infection using a Ptt conidia suspension. The infection was monitored over 2, 4, and 6 days post-inoculation. For untargeted studies, ultra-high performance liquid chromatography coupled with high-resolution mass spectrometry (UHPLC-MS) was used to analyse methanolic plant extracts. Acquired data were processed to generate the data matrices utilised in chemometric modelling and multi-dimensional data mining. For targeted studies, selected metabolites from the amino acids, phenolic acids, and alkaloids classes were quantified using multiple reaction monitoring (MRM) mass spectrometry. 3,5-DCAA was effective as a priming agent in delaying the onset and intensity of symptoms but could not prevent the progression of the disease. Unsupervised learning methods revealed clear differences between the sample extracts from the control plants and the infected plants. Both orthogonal projection to latent structure-discriminant analysis (OPLS-DA) and 'shared and unique structures' (SUS) plots allowed for the extraction of potential markers of the primed and naïve plant responses to Ptt. These include classes of organic acids, fatty acids, amino acids, phenolic acids, and derivatives and flavonoids. Among these, 5-oxo-proline and citric acid were notable as priming response-related metabolites. Metabolites from the tricarboxylic acid pathway were only discriminant in the primed plant infected with Ptt. Furthermore, the quantification of targeted metabolites revealed that hydroxycinnamic acids were significantly more prominent in the primed infected plants, especially at 2 d.p.i. Our research advances efforts to better understand regulated and reprogrammed metabolic responses that constitute defence priming in barley against Ptt.

4.
Front Mol Biosci ; 10: 1232233, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37635940

RESUMO

Ralstonia solanacearum, one of the most destructive crop pathogens worldwide, causes bacterial wilt disease in a wide range of host plants. The major component of the outer membrane of Gram-negative bacteria, lipopolysaccharides (LPS), has been shown to function as elicitors of plant defense leading to the activation of signaling and defense pathways in several plant species. LPS from a R. solanacearum strain virulent on tomato (LPSR. sol.), were purified, chemically characterized, and structurally elucidated. The lipid A moiety consisted of tetra- to hexa-acylated bis-phosphorylated disaccharide backbone, also decorated by aminoarabinose residues in minor species, while the O-polysaccharide chain consisted of either linear tetrasaccharide or branched pentasaccharide repeating units containing α-L-rhamnose, N-acetyl-ß-D-glucosamine, and ß-L-xylose. These properties might be associated with the evasion of host surveillance, aiding the establishment of the infection. Using untargeted metabolomics, the effect of LPSR. sol. elicitation on the metabolome of Solanum lycopersicum leaves was investigated across three incubation time intervals with the application of UHPLC-MS for metabolic profiling. The results revealed the production of oxylipins, e.g., trihydroxy octadecenoic acid and trihydroxy octadecadienoic acid, as well as several hydroxycinnamic acid amide derivatives, e.g., coumaroyl tyramine and feruloyl tyramine, as phytochemicals that exhibit a positive correlation to LPSR. sol. treatment. Although the chemical properties of these metabolite classes have been studied, the functional roles of these compounds have not been fully elucidated. Overall, the results suggest that the features of the LPSR. sol. chemotype aid in limiting or attenuating the full deployment of small molecular host defenses and contribute to the understanding of the perturbation and reprogramming of host metabolism during biotic immune responses.

5.
BMC Plant Biol ; 23(1): 293, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37264330

RESUMO

BACKGROUND: Puccinia striiformis f. sp. tritici (Pst) is an economically devasting disease that is prominent in cereal crops such as wheat (Triticum aestivum). The fungal pathogen can cause approximately 30-70% losses in crop productivity and yields. Pst has become difficult to manage due to its ease of transmission through wind dispersal over long distances, and intercontinental dispersal has been previously reported. The ease of transmission has resulted in further destruction because of new and more virulent strains infecting crops previously resistant to a different strain. RESULTS: In this study, a liquid chromatography-mass spectrometry-based untargeted metabolomics approach, in combination with multivariate data analytical tools, was used to elucidate the mechanistic nature of the defence systems of a Pst-resistant and a susceptible wheat cultivar infected with P. striiformis. We also investigated the time-dependant metabolic reconfiguration of infected plants over a four-week period. The untargeted metabolomic analysis revealed a time-course metabolic reprogramming involving phenylpropanoids (majority flavonoids), amino acids, lipids, benzoic acids, TCA cycle intermediates and benzoxazinoids responding to Pst infection. Interestingly, the results do not show a linear course for the decrease and increase (up-/down-regulation) of said classes of metabolites, but rather the up- or down-regulation of specific metabolites in response to the pathogen infection. The resistant Koonap cultivar had an abundance of phenolic compounds such as rutin, isoorintin-7-O-glucoside and luteolin-6-C-hexoside-O-hexoside. These compounds showed a decrease over time in control Koonap plants compared to an increase in Pst-infected plants. These metabolites were down-regulated in the susceptible Gariep cultivar, which could serve as biomarkers for plant responses to biotic stress and resistance against Pst. CONCLUSIONS: Overall, an LC-MS-based metabolomics approach allowed for the metabolic profiling and analysis of the impact of plant-pathogen interactions on the overall plant metabolome and provided a real-time snapshot of the differential significant metabolic perturbations occurring in wheat plants responding to the Pst pathogen. The Pst-resistant Koonap cultivar showed a rapid accumulation of defence metabolites in response to pathogen infection compared to the susceptible Gariep cultivar. These findings provide insight into the mechanistic biochemical nature of plant-microbe interactions and the prospects of metabolic engineering for improved plant tolerance and resistance to biotic stresses.


Assuntos
Basidiomycota , Triticum , Triticum/metabolismo , Basidiomycota/fisiologia , Puccinia , Doenças das Plantas/microbiologia
6.
Metabolites ; 13(5)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37233707

RESUMO

Designing innovative biological crop protection strategies to stimulate natural plant immunity is motivated by the growing need for eco-friendly alternatives to conventional biocidal agrochemicals. Salicylic acid (SA) and analogues are known chemical inducers of priming plant immunity against environmental stresses. The aim of the study was to study the metabolic reprogramming in barley plants following an application of three proposed dichlorinated inducers of acquired resistance. 3,5-Dichloroanthranilic acid, 2,6-dichloropyridine-4-carboxylic acid, and 3,5-dichlorosalicylic acid were applied to barley at the third leaf stage of development and harvested at 12, 24, and 36 h post-treatment. Metabolites were extracted using methanol for untargeted metabolomics analyses. Samples were analysed by ultra-high performance liquid chromatography coupled to high-definition mass spectrometry (UHPLC-HDMS). Chemometric methods and bioinformatics tools were used to mine and interpret the generated data. Alterations in the levels of both primary and secondary metabolites were observed. The accumulation of barley-specific metabolites, hordatines, and precursors was observed from 24 h post-treatment. The phenylpropanoid pathway, a marker of induced resistance, was identified among the key mechanisms activated by the treatment with the three inducers. No salicylic acid or SA derivatives were annotated as signatory biomarkers; instead, jasmonic acid precursors and derivatives were found as discriminatory metabolites across treatments. The study highlights differences and similarities in the metabolomes of barley after treatment with the three inducers and points to the triggering chemical changes associated with defence and resistance. This report is the first of its kind, and the knowledge acquired provides deeper insight into the role of dichlorinated small molecules as inducers of plant immunity and can be used in metabolomics-guided plant improvement programmes.

7.
J Ethnopharmacol ; 314: 116617, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37182674

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Herb-induced liver injury is poorly described for African herbal remedies, such as Acokanthera oppositifolia. Although a commonly used treatment for pain, snake bites and anthrax, it is also a well-known arrow poison, thus toxicity is to be expected. AIM OF THE STUDY: The cytotoxicity and preliminary mechanisms of toxicity in HepG2 hepatocarcinoma cells were assessed. MATERIALS AND METHODS: The effect of hot water and methanol extracts were on cell density, oxidative status, mitochondrial membrane potential, fatty acids, caspase-3/7 activity, adenosine triphosphate levels, cell cycling and viability was assessed. Phytochemicals were tentatively identified using ultra-performance liquid chromatography. RESULTS: The hot water extract displayed an IC50 of 24.26 µg/mL, and reduced proliferation (S- and G2/M-phase arrest) and viability (by 30.71%) as early as 24 h after incubation. The methanol extract had a comparable IC50 of 26.16 µg/mL, and arrested cells in the G2/M-phase (by 18.87%) and induced necrosis (by 13.21%). The hot water and methanol extracts depolarised the mitochondrial membrane (up to 0.84- and 0.74-fold), though did not generate reactive oxygen species. The hot water and methanol extracts decreased glutathione (0.42- and 0.62-fold) and adenosine triphosphate (0.08- and 0.26-fold) levels, while fatty acids (2.00- and 4.61-fold) and caspase-3/7 activity (1.98- and 5.82-fold) were increased. CONCLUSION: Extracts were both cytostatic and cytotoxic in HepG2 cells. Mitochondrial toxicity was evident and contributed to reducing adenosine triphosphate production and fatty acid accumulation. Altered redox status perturbed proliferation and promoted necrosis. Extracts of A. oppositifolia may thus promote necrotic cell death, which poses a risk for inflammatory hepatotoxicity with associated steatosis.


Assuntos
Antineoplásicos , Apocynaceae , Carcinoma Hepatocelular , Citostáticos , Neoplasias Hepáticas , Humanos , Células Hep G2 , Metanol/química , Citostáticos/farmacologia , Caspase 3 , Extratos Vegetais/toxicidade , Extratos Vegetais/química , Carcinoma Hepatocelular/tratamento farmacológico , Antineoplásicos/farmacologia , Necrose , Neoplasias Hepáticas/tratamento farmacológico , Água/farmacologia , Trifosfato de Adenosina/metabolismo , Apoptose
8.
Front Plant Sci ; 14: 1103413, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37123830

RESUMO

Plant-microbe interactions are a phenomenal display of symbiotic/parasitic relationships between living organisms. Plant growth-promoting rhizobacteria (PGPR) are some of the most widely investigated plant-beneficial microbes due to their capabilities in stimulating plant growth and development and conferring protection to plants against biotic and abiotic stresses. As such, PGPR-mediated plant priming/induced systemic resistance (ISR) has become a hot topic among researchers, particularly with prospects of applications in sustainable agriculture. The current study applies untargeted ultra-high performance liquid chromatography-high-definition mass spectrometry (UHPLC-HDMS) to investigate PGPR-based metabolic reconfigurations in the metabolome of primed wheat plants against Puccinia striiformis f. sp. tricti (Pst). A seed bio-priming approach was adopted, where seeds were coated with two PGPR strains namely Bacillus subtilis and Paenibacillus alvei (T22) and grown under controlled conditions in a glasshouse. The plants were infected with Pst one-week post-germination, followed by weekly harvesting of leaf material. Subsequent metabolite extraction was carried out for analysis on a UHPLC-HDMS system for data acquisition. The data was chemometrically processed to reveal the underlying trends and data structures as well as potential signatory biomarkers for priming against Pst. Results showed notable metabolic reprogramming in primary and secondary metabolism, where the amino acid and organic acid content of primed-control, primed-challenged and non-primed-challenged plants were differentially reprogrammed. Similar trends were observed from the secondary metabolism, in which primed plants (particularly primed-challenged) showed an up-regulation of phenolic compounds (flavonoids, hydroxycinnamic acids-HCAs- and HCA amides) compared to the non-primed plants. The metabolomics-based semi-quantitative and qualitative assessment of the plant metabolomes revealed a time-dependent metabolic reprogramming in primed-challenged and primed-unchallenged plants, indicating the metabolic adaptations of the plants to stripe rust infection over time.

9.
Front Mol Biosci ; 9: 961859, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090044

RESUMO

Pharmacological studies conducted in the past revealed the potential source of medicinal plants in the development of novel medicines. The phenolic contents of medicinal plants containing chlorogenic acids (CGA) have been linked to a variety of therapeutic effects, especially antiviral activity. Helichrysum aureonitens is a medicinal plant which has been reported to contain chlorogenic acids compounds and has also shown antiviral activities against a number of virus species including Herpes Simplex Virus-1 (HSV-1). In this study, the aim was to determine both the influence of seasonal variation and locality on the antiviral properties of H. aureonitens. Since chlorogenic acids have been reported as potent antiviral compounds, these compounds were targeted to determine the effects of locality and seasonal change on the chlorogenic acid profile, and subsequent antiviral activity. The ultra-performance liquid chromatography-quadrupole time-of-flight mass spectroscopy (UPLC-qTOF-MS) was employed to determine the metabolic profile variations of three derivatives of chlorogenic acids-caffeoylquinic acid (CQA), dicaffeoylquinic acid (DCQA) and tricaffeoylquinic acid (TCQA) in the harvested plants growing in two diverse geographical climates and two different seasons (spring and autumn). Using the cytopathic effect (CPE) reduction approach, twenty-six samples of the plants' leaves and stems collected during spring and autumn at Telperion nature reserve in Mpumalanga and Wakefield farm, Midlands in KwaZulu-Natal region of South Africa were evaluated for anti-HSV activity. The MTT assay was used for the cytotoxicity evaluation of the extracts prior to antiviral determination. Seventeen (mostly spring collections) of the twenty-six extracts examined were found to have considerable anti-HSV activity as measured by a reduction in tissue culture infectious dose (TCID50) of less than 105. The UPLC-qTOF-MS result revealed that dicaffeoylquinic acid (DCQA) is the most abundant, with higher concentrations in both regions and seasons. 3-CQA was also shown to be the most abundant isomer of caffeoylquinic acid in this investigation.

10.
Front Microbiol ; 13: 971836, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36090115

RESUMO

The rhizosphere is a highly complex and biochemically diverse environment that facilitates plant-microbe and microbe-microbe interactions, and this region is found between plant roots and the bulk soil. Several studies have reported plant root exudation and metabolite secretion by rhizosphere-inhabiting microbes, suggesting that these metabolites play a vital role in plant-microbe interactions. However, the biochemical constellation of the rhizosphere soil is yet to be fully elucidated and thus remains extremely elusive. In this regard, the effects of plant growth-promoting rhizobacteria (PGPR)-plant interactions on the rhizosphere chemistry and above ground tissues are not fully understood. The current study applies an untargeted metabolomics approach to profile the rhizosphere exo-metabolome of wheat cultivars generated from seed inoculated (bio-primed) with Paenibacillus (T22) and Bacillus subtilis strains and to elucidate the effects of PGPR treatment on the metabolism of above-ground tissues. Chemometrics and molecular networking tools were used to process, mine and interpret the acquired mass spectrometry (MS) data. Global metabolome profiling of the rhizosphere soil of PGPR-bio-primed plants revealed differential accumulation of compounds from several classes of metabolites including phenylpropanoids, organic acids, lipids, organoheterocyclic compounds, and benzenoids. Of these, some have been reported to function in plant-microbe interactions, chemotaxis, biocontrol, and plant growth promotion. Metabolic perturbations associated with the primary and secondary metabolism were observed from the profiled leaf tissue of PGPR-bio-primed plants, suggesting a distal metabolic reprograming induced by PGPR seed bio-priming. These observations gave insights into the hypothetical framework which suggests that PGPR seed bio-priming can induce metabolic changes in plants leading to induced systemic response for adaptation to biotic and abiotic stress. Thus, this study contributes knowledge to ongoing efforts to decipher the rhizosphere metabolome and mechanistic nature of biochemical plant-microbe interactions, which could lead to metabolome engineering strategies for improved plant growth, priming for defense and sustainable agriculture.

11.
Front Plant Sci ; 13: 920963, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755693

RESUMO

Beneficial soil microbes like plant growth-promoting rhizobacteria (PGPR) significantly contribute to plant growth and development through various mechanisms activated by plant-PGPR interactions. However, a complete understanding of the biochemistry of the PGPR and microbial intraspecific interactions within the consortia is still enigmatic. Such complexities constrain the design and use of PGPR formulations for sustainable agriculture. Therefore, we report the application of mass spectrometry (MS)-based untargeted metabolomics and molecular networking (MN) to interrogate and profile the intracellular chemical space of PGPR Bacillus strains: B. laterosporus, B. amyloliquefaciens, B. licheniformis 1001, and B. licheniformis M017 and their consortium. The results revealed differential and diverse chemistries in the four Bacillus strains when grown separately, and also differing from when grown as a consortium. MolNetEnhancer networks revealed 11 differential molecular families that are comprised of lipids and lipid-like molecules, benzenoids, nucleotide-like molecules, and organic acids and derivatives. Consortium and B. amyloliquefaciens metabolite profiles were characterized by the high abundance of surfactins, whereas B. licheniformis strains were characterized by the unique presence of lichenysins. Thus, this work, applying metabolome mining tools, maps the microbial chemical space of isolates and their consortium, thus providing valuable insights into molecular information of microbial systems. Such fundamental knowledge is essential for the innovative design and use of PGPR-based biostimulants.

12.
Metabolites ; 12(6)2022 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-35736420

RESUMO

Drought is one of the major abiotic stresses causing severe damage and losses in economically important crops worldwide. Drought decreases the plant water status, leading to a disruptive metabolic reprogramming that negatively affects plant growth and yield. Seaweed extract-based biostimulants show potential as a sustainable strategy for improved crop health and stress resilience. However, cellular, biochemical, and molecular mechanisms governing the agronomically observed benefits of the seaweed extracts on plants are still poorly understood. In this study, a liquid chromatography-mass spectrometry-based untargeted metabolomics approach combined with computational metabolomics strategies was applied to unravel the molecular 'stamps' that define the effects of seaweed extracts on greenhouse-grown maize (Zea mays) under drought conditions. We applied mass spectral networking, substructure discovery, chemometrics, and metabolic pathway analyses to mine and interpret the generated mass spectral data. The results showed that the application of seaweed extracts induced alterations in the different pathways of primary and secondary metabolism, such as phenylpropanoid, flavonoid biosynthesis, fatty acid metabolism, and amino acids pathways. These metabolic changes involved increasing levels of phenylalanine, tryptophan, coumaroylquinic acid, and linolenic acid metabolites. These metabolic alterations are known to define some of the various biochemical and physiological events that lead to enhanced drought resistance traits. The latter include root growth, alleviation of oxidative stress, improved water, and nutrient uptake. Moreover, this study demonstrates the use of molecular networking in annotating maize metabolome. Furthermore, the results reveal that seaweed extract-based biostimulants induced a remodeling of maize metabolism, subsequently readjusting the plant towards stress alleviation, for example, by increasing the plant height and diameter through foliar application. Such insights add to ongoing efforts in elucidating the modes of action of biostimulants, such as seaweed extracts. Altogether, our study contributes to the fundamental scientific knowledge that is necessary for the development of a biostimulants industry aiming for a sustainable food security.

13.
Molecules ; 27(12)2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35744961

RESUMO

This work presents the first report on the phytochemical investigation of Harpephyllum caffrum Bernh. gum exudate. A known cardanol, 3-heptadec-12'-Z-enyl phenol (1) and three new alk(en)ylhydroxycyclohexanes, namely, (1R,3R)-1,3-dihydroxy-3-[heptadec-12'(Z)-enyl]cyclohexane (2) (1S,2S,3S,4S,5R)-1,2,3,4,5-pentahydroxy-5-[octadec-13'(Z)-enyl]cyclohexane (3) and (1R,2S,4R)-1,2,4-trihydroxy-4-[heptadec-12'(Z)-enyl]cyclohexane (4) were isolated from the gum. The structures of the compounds were determined by extensive 1D and 2D NMR spectroscopy and HR-ESI-MS data. The ethanolic extract of the gum was found to be the most potent tyrosinase inhibitor with IC50 of 11.32 µg/mL while compounds 2 and 3, with IC50 values of 24.90 and 26.99 µg/mL, respectively, were found to be potential anti-tyrosinase candidates from the gum. Gum exudate may be a potential source for non-destructive harvesting of selective pharmacologically active compounds from plants. The results also provide evidence that H. caffrum gum may find application in cosmetics as a potential anti-tyrosinase agent.


Assuntos
Anacardiaceae , Monofenol Mono-Oxigenase , Cicloexanos , Exsudatos e Transudatos , Estrutura Molecular , Extratos Vegetais/química , Extratos Vegetais/farmacologia
14.
Metabolites ; 12(5)2022 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-35629883

RESUMO

Plants perceive pathogenic threats from the environment that have evaded preformed barriers through pattern recognition receptors (PRRs) that recognise microbe-associated molecular patterns (MAMPs). The perception of and triggered defence to lipopolysaccharides (LPSs) as a MAMP is well-studied in mammals, but little is known in plants, including the PRR(s). Understanding LPS-induced secondary metabolites and perturbed metabolic pathways in Arabidopsis will be key to generating disease-resistant plants and improving global plant crop yield. Recently, Arabidopsis LPS-binding protein (LBP) and bactericidal/permeability-increasing protein (BPI)-related proteins (LBP/BPI related-1) and (LBP/BPI related-2) were shown to perceive LPS from Pseudomonas aeruginosa and trigger defence responses. In turn, brassinosteroid insensitive 1 (BRI1)-associated receptor kinase 1 (BAK1) is a well-established co-receptor for several defence-related PRRs in plants. Due to the lack of knowledge pertaining to LPS perception in plants and given the involvement of the afore-mentioned proteins in MAMPs recognition, in this study, Arabidopsis wild type (WT) and mutant (lbr2-2 and bak1-4) plants were pressure-infiltrated with LPSs purified from Pseudomonas syringae pv. tomato DC3000 (Pst) and Xanthomonas campestris pv. campestris 8004 (Xcc). Metabolites were extracted from the leaves at four time points over a 24 h period and analysed by UHPLC-MS, generating distinct metabolite profiles. Data analysed using unsupervised and supervised multivariate data analysis (MVDA) tools generated results that reflected time- and treatment-related variations after both LPS chemotypes treatments. Forty-five significant metabolites were putatively annotated and belong to the following groups: glucosinolates, hydroxycinnamic acid derivatives, flavonoids, lignans, lipids, oxylipins, arabidopsides and phytohormones, while metabolic pathway analysis (MetPA) showed enrichment of flavone and flavanol biosynthesis, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and glucosinolate biosynthesis. Distinct metabolite accumulations depended on the LPS chemotype and the genetic background of the lbr2-2 and bak1-4 mutants. This study highlights the role of LPSs in the reprogramming Arabidopsis metabolism into a defensive state, and the possible role of LBR and BAK1 proteins in LPSs perception and thus plant defence against pathogenic bacteria.

15.
Metabolites ; 12(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35448497

RESUMO

In the process of enhancing crop potential, metabolomics offers a unique opportunity to biochemically describe plant metabolism and to elucidate metabolite profiles that govern specific phenotypic characteristics. In this study we report an untargeted metabolomic profiling of shoots and roots of barley seedlings performed to reveal the chemical makeup therein at an early growth stage. The study was conducted on five cultivars of barley: 'Overture', 'Cristalia', 'Deveron', 'LE7' and 'Genie'. Seedlings were grown for 16 days post germination under identical controlled conditions, and methanolic extracts were analysed on an ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) system. In addition, an unsupervised pattern identification technique, principal component analysis (PCA), was performed to process the generated multidimensional data. Following annotation of specific metabolites, several classes were revealed, among which phenolic acids represented the largest group in extracts from both shoot and root tissues. Interestingly, hordatines, barley-specific metabolites, were not found in the root tissue. In addition, metabolomic profiling revealed metabolites potentially associated with the plants' natural protection system against potential pathogens. The study sheds light on the chemical composition of barley at a young developmental stage and the information gathered could be useful in plant research and biomarker-based breeding programs.

16.
Metabolites ; 12(3)2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35323691

RESUMO

The metabolome is the underlying biochemical layer of the phenotype and offers a functional readout of the cellular mechanisms involved in a biological system. Since metabolites are considered end-products of regulatory processes at a cellular level, their levels are considered the definitive response of the biological system to genetic or environmental variations. The metabolome thus serves as a metabolic fingerprint of the biochemical events that occur in a biological system under specific conditions. In this study, an untargeted metabolomics approach was applied to elucidate biochemical processes implicated in oat plant responses to Pseudomonas syringae pv. coronafaciens (Ps-c) infection, and to identify signatory markers related to defence responses and disease resistance against halo blight. Metabolic changes in two oat cultivars ("Dunnart" and "SWK001") responding to Ps-c, were examined at the three-leaf growth stage and metabolome changes monitored over a four-day post-inoculation period. Hydromethanolic extracts were analysed using an ultra-high-performance liquid chromatography (UHPLC) system coupled to a high-definition mass spectrometer (MS) analytical platform. The acquired multi-dimensional data were processed using multivariate statistical analysis and chemometric modelling. The validated chemometric models indicated time- and cultivar-related metabolic changes, defining the host response to the bacterial inoculation. Further multivariate analyses of the data were performed to profile differential signatory markers, putatively associated with the type of launched defence response. These included amino acids, phenolics, phenolic amides, fatty acids, flavonoids, alkaloids, terpenoids, lipids, saponins and plant hormones. Based on the results, metabolic alterations involved in oat defence responses to Ps-c were elucidated and key signatory metabolic markers defining the defence metabolome were identified. The study thus contributes toward a more holistic understanding of the oat metabolism under biotic stress.

17.
Heliyon ; 8(2): e08936, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35243061

RESUMO

Twenty medicinal plants with previously established anti-viral activity against a wild-type RVFV were further investigated using bio-chemometric and analytical techniques. The aim being to identify compounds common in plants with anti-RVFV activity, potentially being the major contributors to the anti-viral effect. Proton nuclear magnetic resonance (1H NMR) spectroscopy coupled with multivariate data analysis (MVDA) was applied to characterize metabolite profiles of twenty antiviral medicinal plants. Discrimination and prediction of metabolome data of active anti-RVFV from the less-active samples was assessed using the multivariate statistical models by constructing a robust principal component analysis (PCA) and orthogonal partial least squares discriminant analysis (OPLS-DA) regression model. Annotation of metabolites in the samples with higher activity were performed by Chenomx software and the compounds confirmed using Ultra-High-Performance Liquid Chromatography-Quadrupole Time-of-Flight Mass Spectrometry (UHPLC-qTOF-MS). Both the PCA and OPLS-DA score plots showed clustering of samples; however, the OPLS-DA plot indicated a clear separation among active and less-active samples. Metabolic biomarkers were screened by p-value < 0.05 and variable importance in the projection (VIP) value >1 and S-plot. Among active samples, the most prominent metabolites putatively identified by NMR include trigonelline, vanillic acid, fumarate, chlorogenic acid, ferulate, and formate. The presence of the compounds were confirmed by UHPLC-qTOF-MS, and two hydroxylated fatty acids were additionally detected indicated by peaks at m/z 293.2116 and m/z 295.2274 13S-Hydroxy-9Z,11E,15Z-octadecatrienoic acid and 13-Hydroxy-9Z,11E-octadecadienoic acid were annotated for the first time in all the antiviral active samples and are considered potential metabolites responsible for the antiviral activity. The study provides a metabolomic profile of anti-RVFV plant extracts and report for the first time the presence of hydroxylated fatty acids 13S-Hydroxy-9Z,11E,15Z-octadecatrienoic acid and 13-Hydroxy-9Z,11E-octadecadienoic acid, present in all the tested medicinal plants with high anti-RVFV activity and is a potential target for the future development of antiviral therapeutic agents.

18.
Metabolites ; 12(2)2022 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-35208172

RESUMO

Plants continuously produce essential metabolites that regulate their growth and development. The enrichment of specific metabolites determines plant interactions with the immediate environment, and some metabolites become critical in defence responses against biotic and abiotic stresses. Here, an untargeted UHPLC-qTOF-MS approach was employed to profile metabolites of wheat cultivars resistant or susceptible to the pathogen Puccinia striiformis f. sp. tritici (Pst) and Aluminium (Al3+) toxicity. Multivariate statistical analysis (MVDA) tools, viz. principal component analysis (PCA) and hierarchical cluster analysis (HiCA) were used to qualify the correlation between the identified metabolites and the designated traits. A total of 100 metabolites were identified from primary and secondary metabolisms, including phenolic compounds, such as flavonoid glycosides and hydroxycinnamic acid (HCA) derivatives, fatty acids, amino acids, and organic acids. All metabolites were significantly variable among the five wheat cultivars. The Pst susceptible cultivars demonstrated elevated concentrations of HCAs compared to their resistant counterparts. In contrast, 'Koonap' displayed higher levels of flavonoid glycosides, which could point to its resistant phenotype to Pst and Al3+ toxicity. The data provides an insight into the metabolomic profiles and thus the genetic background of Pst- and Al3+-resistant and susceptible wheat varieties. This study demonstrates the prospects of applied metabolomics for chemotaxonomic classification, phenotyping, and potential use in plant breeding and crop improvement.

19.
Metabolites ; 11(12)2021 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-34940578

RESUMO

The ongoing unpredictability of climate changes is exponentially exerting a negative impact on crop production, further aggravating detrimental abiotic stress effects. Several research studies have been focused on the genetic modification of crop plants to achieve more crop resilience against such stress factors; however, there has been a paradigm shift in modern agriculture focusing on more organic, eco-friendly and long-lasting systems to improve crop yield. As such, extensive research into the use of microbial and nonmicrobial biostimulants has been at the core of agricultural studies to improve crop growth and development, as well as to attain tolerance against several biotic and abiotic stresses. However, the molecular mechanisms underlying the biostimulant activity remain enigmatic. Thus, this study is a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics approach to unravel the hypothetical biochemical framework underlying effects of a nonmicrobial biostimulant (a silicon-based formulation) on tomato plants (Solanum lycopersium) under salinity stress conditions. This metabolomics study postulates that Si-based biostimulants could alleviate salinity stress in tomato plants through modulation of the primary metabolism involving changes in the tricarboxylic acid cycle, fatty acid and numerous amino acid biosynthesis pathways, with further reprogramming of several secondary metabolism pathways such as the phenylpropanoid pathway, flavonoid biosynthesis pathways including flavone and flavanol biosynthesis. Thus, the postulated hypothetical framework, describing biostimulant-induced metabolic events in tomato plants, provides actionable knowledge necessary for industries and farmers to, confidently and innovatively, explore, design, and fully implement Si-based formulations and strategies into agronomic practices for sustainable agriculture and food production.

20.
Metabolites ; 11(9)2021 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-34564394

RESUMO

One of the ultimate goals of plant breeding is the development of new crop cultivars capable of withstanding increasing environmental stresses, to sustain the constantly growing population and economic demands. Investigating the chemical composition of the above and underground tissues of cultivars is crucial for the understanding of common and specific traits thereof. Using an untargeted metabolomics approach together with appropriate chemometrics tools, the differential metabolite profiles of leaf and root extracts from five cultivars of barley ('Erica', 'Elim', 'Hessekwa', 'S16' and 'Agulhas') were explored and potential signatory biomarkers were revealed. The study was conducted on seedlings grown for 21 days under identical controlled conditions. An ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC-HRMS) was employed to analyse hydromethanolic leaf and root extracts of barley cultivars. Furthermore, unsupervised and supervised learning algorithms were applied to mine the generated data and to pinpoint cultivar-specific metabolites. Among all the classes of metabolites annotated, phenolic acids and derivatives formed the largest group and also represented the most discriminatory metabolites. In roots, saponarin, an important allelochemical differentially distributed across cultivars, was the only flavonoid annotated. The application of an untargeted metabolomics approach in phenotyping grain crops such as barley was demonstrated, and the metabolites responsible for differentiating between the selected cultivars were revealed. The study provides insights into the chemical architecture of barley, an agro-economically relevant cereal crop; and reiterates the importance of metabolomics tools in plant breeding practices for crop improvement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA