RESUMO
Terrestrial-based nutrient pollution has emerged as one of the most detrimental factors to coral health in many reef habitats. Recent studies have shown that excessive dissolved inorganic nutrients can reduce coral thermal tolerance thresholds and even exacerbate bleaching during thermal stress, yet the effects of minor nutrient enrichment under heat stress have not been extensively studied. In this study, Lobactis scutaria, Montipora capitata, and Pocillopora acuta colonies under heated conditions (~30.5 °C) were exposed to low and balanced nitrogen and phosphorous concentrations over a 31-day heating period. Coral colonies were collected from Kane'ohe Bay, O'ahu, which has a unique history of nutrient pollution, and held in mesocosms that allowed for environmental manipulation yet are also influenced by local field conditions. Principal findings included delays in the bleaching of nutrient-enriched heated colonies as compared to heated-only colonies, in addition to relatively greater calcification rates and lower proportions of early-stage paling. Species-specific outcomes were prevalent, with L. scutaria demonstrating no difference in calcification with enrichment under heat stress. By the end of the heating stage, however, many heated colonies were at least partially impacted by bleaching or mortality. Despite this, our findings suggest that low levels of balanced nutrient enrichment may serve as a mitigative force during thermal events. Further field-based studies will be required to assess these results in different reef habitats.
Assuntos
Antozoários , Animais , Havaí , Ecossistema , Resposta ao Choque Térmico , NutrientesRESUMO
BACKGROUND: Infants in the neonatal intensive care unit may be exposed to ethanol via medications that contain ethanol as an excipient and through inhalation of ethanol vapor from hand sanitizers. We hypothesized that both pathways of exposure would result in elevated urinary biomarkers of ethanol. METHODS: Urine samples were collected from infants in incubators and in open cribs. Two ethanol metabolites, ethyl sulfate (EtS) and ethyl glucuronide (EtG), were quantified in infants' urine. RESULTS: A subset of infants both in incubators and open cribs had ethanol biomarkers greater than the cutoff concentration that identifies adult alcohol consumption. These concentrations were associated with the infant having received an ethanol-containing medication on the day of urine collection. When infants who received an ethanol-containing medication were excluded from analysis, there was no difference in ethanol biomarker concentrations between the incubator and crib groups. CONCLUSIONS: Some infants who received ethanol-containing medications had concentrations of ethanol biomarkers that are indicative of adult alcohol consumption, suggesting potential exposure via ethanol excipients. IMPACT: Infants and newborns in the neonatal intensive care unit are exposed to concerning amounts of ethanol. No one has shown exposure to ethanol in these infants before this study. The impact is that better understanding of the excipients in medications given to patients in the NICU is needed. When physicians order medications in the NICU, the amount of excipient needs to be indicated.
Assuntos
Etanol/urina , Unidades de Terapia Intensiva Neonatal , Terapia Intensiva Neonatal/métodos , Biomarcadores , Cromatografia Líquida , Etanol/efeitos adversos , Feminino , Glucuronatos/urina , Higienizadores de Mão/efeitos adversos , Humanos , Incubadoras , Lactente , Recém-Nascido , Recém-Nascido Prematuro/urina , Masculino , Espectrometria de Massas , Ésteres do Ácido Sulfúrico/urinaRESUMO
BackgroundPreterm infants (PTI) in the NICU are often placed in incubators that may increase their exposure to volatile organic chemicals (VOCs). To determine whether PTI in incubators have higher urinary concentrations of VOC metabolites compared with infants in cribs.MethodsUrine from 40 PTI in incubators and 40 infants in cribs was collected and analyzed for 28 urinary VOC biomarkers. Differences in metabolite concentrations between the two groups were compared.ResultsTwenty two of the VOC metabolites were detected in at least one urine sample. All urine samples tested had measurable levels of six VOC metabolites. Biomarkers for acrolein, acrylonitrile, carbon disulfide, cyanide, N-dimethylformamide, ethylbenzene, ethylene oxide, propylene oxide, styrene, toluene/benzyl alcohol, vinyl chloride, and xylene were higher in the incubator group. The geometric means of five VOC metabolites were 2-fold higher than those reported for NHANES children 6-11 years of age in one or both of the groups with benzyl mercapturic acid being 7-fold and 12-fold greater than NHANES in the crib and incubator group, respectively.ConclusionAll infants were exposed to VOCs. PTI in incubators have a different VOC exposure profile compared with infants in cribs. The health implications associated with these exposures require further study.