RESUMO
Camelina cake (CAM) is a co-product proposed as an alternative protein source; however, piglet data are still limited. This study aimed to evaluate the effect of different doses of CAM in substitution of soyabean meal on the growth, health and gut health of weaned pigs. At 14 d post-weaning (d0), sixty-four piglets were assigned either to a standard diet or to a diet with 4 %, 8 % or 12 % of CAM. Piglets were weighed weekly. At d7 and d28, faeces were collected for microbiota and polyamine and blood for reactive oxygen metabolites (ROM) and thyroxine analysis. At d28, pigs were slaughtered, organs were weighed, pH was recorded on gut, colon was analysed for volatile fatty acids (VFA) and jejunum was used for morphological and gene expression analysis. Data analysis was carried out using a mixed model including diet, pen and litter as factors; linear and quadratic contrasts were tested. CAM linearly reduced the average daily gain from d0-d7, d0-d14, d0-d21 and d0-d28 (P ≤ 0·01). From d0-d7 increasing CAM linearly decreased feed intake (P = 0·04) and increased linearly the feed to gain (P = 0·004). CAM increased linearly the liver weight (P < 0·0001) and affected the cadaverine (P < 0·001). The diet did not affect the ROM, thyroxine, intestinal pH, VFA and morphology. All doses of CAM increased the α diversity indices at d28 (P < 0·05). CAM at 4 % promoted the abundance of Butyricicoccaceae_UCG-008. Feeding with CAM enhanced resilience in the gut microbiome and can be evaluated as a potential alternative protein source with dose-dependent limitations on piglet growth performance.
Assuntos
Ração Animal , Dieta , Desmame , Animais , Ração Animal/análise , Dieta/veterinária , Suínos/crescimento & desenvolvimento , Fenômenos Fisiológicos da Nutrição Animal , Brassicaceae/química , Glycine max/química , Microbioma Gastrointestinal/efeitos dos fármacos , Ácidos Graxos Voláteis/metabolismo , MasculinoRESUMO
The incidence of hepatocellular carcinoma (HCC) is increasing, and 40% of patients are diagnosed at advanced stages. Over the past 5 years, the number of clinically available treatments has dramatically increased for HCC, making patient management particularly complex. Immune checkpoint inhibitors (ICIs) have improved the overall survival of patients, showing a durable treatment benefit over time and a different response pattern with respect to tyrosine kinase inhibitors (TKIs). Although there is improved survival in responder cases, a sizeable group of patients are primary progressors or are ineligible for immunotherapy. Indeed, patients with nonviral etiologies, such as nonalcoholic steatohepatitis (NASH), and alterations in specific driver genes might be less responsive to immunotherapy. Therefore, improving the comprehension of mechanisms of drug resistance and identifying biomarkers that are informative of the best treatment approach are required actions to improve patient survival. Abundant evidence indicates that noncoding RNAs (ncRNAs) are pivotal players in cancer. Molecular mechanisms through which ncRNAs exert their effects in cancer progression and drug resistance have been widely investigated. Nevertheless, there are no studies summarizing the synergistic effect between ncRNA-based strategies and TKIs or ICIs in the preclinical setting. This review aims to provide up-to-date information regarding the possible use of ncRNAs as therapeutic targets in association with molecular-targeted agents and immunotherapies and as predictive tools for the selection of optimized treatment options in advanced HCCs.
RESUMO
BACKGROUND: Metabolic reprogramming is a well-known marker of cancer, and it represents an early event during hepatocellular carcinoma (HCC) development. The recent approval of several molecular targeted agents has revolutionized the management of advanced HCC patients. Nevertheless, the lack of circulating biomarkers still affects patient stratification to tailored treatments. In this context, there is an urgent need for biomarkers to aid treatment choice and for novel and more effective therapeutic combinations to avoid the development of drug-resistant phenotypes. This study aims to prove the involvement of miR-494 in metabolic reprogramming of HCC, to identify novel miRNA-based therapeutic combinations and to evaluate miR-494 potential as a circulating biomarker. METHODS: Bioinformatics analysis identified miR-494 metabolic targets. QPCR analysis of glucose 6-phosphatase catalytic subunit (G6pc) was performed in HCC patients and preclinical models. Functional analysis and metabolic assays assessed G6pc targeting and miR-494 involvement in metabolic changes, mitochondrial dysfunction, and ROS production in HCC cells. Live-imaging analysis evaluated the effects of miR-494/G6pc axis in cell growth of HCC cells under stressful conditions. Circulating miR-494 levels were assayed in sorafenib-treated HCC patients and DEN-HCC rats. RESULTS: MiR-494 induced the metabolic shift of HCC cells toward a glycolytic phenotype through G6pc targeting and HIF-1A pathway activation. MiR-494/G6pc axis played an active role in metabolic plasticity of cancer cells, leading to glycogen and lipid droplets accumulation that favored cell survival under harsh environmental conditions. High miR-494 serum levels associated with sorafenib resistance in preclinical models and in a preliminary cohort of HCC patients. An enhanced anticancer effect was observed for treatment combinations between antagomiR-494 and sorafenib or 2-deoxy-glucose in HCC cells. CONCLUSIONS: MiR-494/G6pc axis is critical for the metabolic rewiring of cancer cells and associates with poor prognosis. MiR-494 deserves attention as a candidate biomarker of likelihood of response to sorafenib to be tested in future validation studies. MiR-494 represents a promising therapeutic target for combination strategies with sorafenib or metabolic interference molecules for the treatment of HCC patients who are ineligible for immunotherapy.
Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , MicroRNAs , Ratos , Animais , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , MicroRNAs/metabolismoRESUMO
BACKGROUND: The recent pandemic has led to major lifestyle changes, especially in women, changes that will impact cardiovascular risk. The aim of the present observational study was to evaluate changes occurred during pandemic in coffee and caffeine intake in a group of adult women and compare changes in smoking versus non-smoking women. METHODS: A web questionnaire was sent through a online survey platform to a group of unselected adult women. The consumption of coffee and caffeine were investigated in 2 groups of women by comparing smokers and non-smokers. RESULTS: A total of 435 adult women (256 non-smokers and 179 smokers) answer to all questions. Smokers increase the number of cigarette/days (mean + 3.4 cig/day). Coffee intake was significantly increase in smokers compared to non-smokers (3.1+1.0 versus 1.5+0.6 cups/day p<0.01). In smokers, self-perception of increase stress was related to increased coffee intake (r = 0.84; p <0.001), increased sugar- rich foods (r=0.81; p<0.001), increased chocolate rich snacks (r=0.72; p<0.01), increased sitting time (r=0.79; p<0.01). CONCLUSIONS: These preliminary data must suggest to undertake social campaigns aimed at encouraging a return to a healthy lifestyle that certainly includes a healthy diet but also the suspension of smoking. These observational results need further evaluation with prospective studies in order to quantify the effects of pandemic-induced changes in lifestyle on cardiovascular risk in women.
Assuntos
Doenças Cardiovasculares , Café , Adulto , Humanos , Feminino , Cafeína , Estudos Prospectivos , não Fumantes , Pandemias , Fatores de Risco , Doenças Cardiovasculares/epidemiologia , Doenças Cardiovasculares/prevenção & controleRESUMO
BACKGROUND: Branched-chain amino acids (BCAAs), including L-leucine (L-Leu), L-isoleucine (L-Ile), L-valine (L-Val), and L-arginine (L-Arg), play a crucial role in mammary gland development, secretion of milk and regulation of the catabolic state and immune response of lactating sows. Furthermore, it has recently been suggested that free amino acids (AAs) can also act as microbial modulators. This study aimed at evaluating whether the supplementation of lactating sows with BCAAs (9, 4.5 and 9 g/d/sow of L-Val, L-Ile and L-Leu, respectively) and/or L-Arg (22.5 g/d/sow), above the estimated nutritional requirement, could influence the physiological and immunological parameters, microbial profile, colostrum and milk composition and performance of sows and their offspring. RESULTS: At d 41, piglets born from the sows supplemented with the AAs were heavier (P = 0.03). The BCAAs increased glucose and prolactin (P < 0.05) in the sows' serum at d 27, tended to increase immunoglobulin A (IgA) and IgM in the colostrum (P = 0.06), increased the IgA (P = 0.004) in the milk at d 20 and tended to increase lymphocyte% in the sows' blood at d 27 (P = 0.07). Furthermore, the BCAAs tended to reduce the Chao1 and Shannon microbial indices (P < 0.10) in the sows' faeces. The BCAA group was discriminated by Prevotellaceae_UCG-004, Erysipelatoclostridiaceae UCG-004, the Rikenellaceae_RC9_gut_group and Treponema berlinense. Arginine reduced piglet mortality pre- (d 7, d 14) and post-weaning (d 41) (P < 0.05). Furthermore, Arg increased the IgM in the sow serum at d 10 (P = 0.05), glucose and prolactin (P < 0.05) in the sow serum at d 27 and the monocyte percentage in the piglet blood at d 27 (P = 0.025) and their jejunal expression of NFKB2 (P = 0.035) while it reduced the expression of GPX-2 (P = 0.024). The faecal microbiota of the sows in Arg group was discriminated by Bacteroidales. The combination of BCAAs and Arg tended to increase spermine at d 27 (P = 0.099), tended to increase the Igs (IgA and IgG, P < 0.10) at d 20 in the milk, favoured the faecal colonisation of Oscillospiraceae UCG-005 and improved piglet growth. CONCLUSION: Feeding Arg and BCAAs above the estimated requirements for milk production may be a strategy to improve sow productive performance in terms of piglet average daily gain (ADG), immune competence and survivability via modulation of the metabolism, colostrum and milk compositions and intestinal microbiota of the sows. The synergistic effect between these AAs, noticeable by the increase of Igs and spermine in the milk and in the improvement of the performance of the piglets, deserves additional investigation.
RESUMO
Little is known about the pharmacological activity of Ammodaucus leucotrichus Coss. & Dur., a small annual species that grows in the Saharan and sub-Saharan countries. In the present study, we investigated whether the standardized ethanolic extract of A. leucotrichus fruits and R-perillaldehyde, a monoterpenoid isolated from A. leucotrichus fruits, are able to affect different processes involved in different phases of cancer development. In particular, we explored their genoprotective, proapoptotic, antiproliferative, and cytodifferentiating potential on different human cell models. We analyzed the genoprotective and proapoptotic activity on human lymphoblast cells (TK6) using the micronucleus test, and the cytodifferentiation effects on human promyelocytic cells (HL60) through the evaluation of different markers of differentiation forward granulocytes or monocytes. The results showed that the extract and perillaldehyde were able to induce apoptosis and protect from clastogen-induced DNA damage. To our best knowledge, this is the first report on the ability of A. leucotrichus and perillaldehyde to induce apoptosis and protect DNA from the toxicity of different compounds. Data reported in this work are the starting point for their pharmacological use. Going forward, efforts to determine their effects on other events associated with cancer development, such as angiogenesis and metastasization, will provide important information and improve our understanding of their potential in cancer therapy.
RESUMO
Cancer affects more than 19 million people and is the second leading cause of death in the world. One of the principal strategies used in cancer therapy is the inhibition of topoisomerase II, involved in the survival of cells. Side effects and adverse reactions limit the use of topoisomerase II inhibitors; hence, research is focused on discovering novel compounds that can inhibit topoisomerase II and have a safer toxicological profile. Marine organisms are a source of secondary metabolites with different pharmacological properties including anticancer activity. The objective of this review is to present and discuss the pharmacological potential of marine-derived compounds whose antitumor activity is mediated by topoisomerase II inhibition. Several compounds derived from sponges, fungi, bacteria, ascidians, and other marine sources have been demonstrated to inhibit topoisomerase II. However, some studies only report docking interactions, whereas others do not fully explain the mechanisms of topoisomerase II inhibition. Further in vitro and in vivo studies are needed, as well as a careful toxicological profile evaluation with a focus on cancer cell selectivity.
Assuntos
Antineoplásicos , Neoplasias , Humanos , DNA Topoisomerases Tipo II/metabolismo , Inibidores da Topoisomerase II/farmacologia , Inibidores da Topoisomerase II/metabolismo , Fungos/metabolismo , Neoplasias/tratamento farmacológico , Organismos Aquáticos/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/metabolismoRESUMO
Microalgae are a source of bioactive compounds having recently been studied for their possible application as health-promoting ingredients. The aim of the study was to evaluate in an in vitro canine gut model the effects of four microalgae, Arthrospira platensis (AP), Haematococcus pluvialis (HP), Phaeodactylum tricornutum (PT) and Chlorella vulgaris (CV), on some fecal microbial populations and metabolites. The four microalgae were subjected to an in vitro digestion procedure, and subsequently, the digested biomass underwent colonic in vitro fermentation. After 6 h of incubation, PT increased propionate (+36%) and butyrate (+24%), and decreased total BCFA (-47%), isobutyrate (-52%) and isovalerate (-43%) and C. hiranonis (-0.46 log10 copies/75 ng DNA). After 24 h, PT increased propionate (+21%) and isovalerate (+10%), and decreased the abundance of Turicibacter spp. (7.18 vs. 6.69 and 6.56 log10 copies/75 ng DNA for CTRL vs. PT, respectively); moreover, after 24 h, CV decreased C. coccoides (-1.12 log10 copies/75 ng DNA) and Enterococcus spp. (-0.37 log10 copies/75 ng DNA). In conclusion, the microbial saccharolytic activities and the shift in fecal bacterial composition were less pronounced than expected, based on current literature. This study should be considered as a preliminary assessment, and future investigations are required to better understand the role of microalgae in canine nutrition.
RESUMO
Introduction: Obesity is the most common nutritional disease in dogs, and is generally managed by caloric restriction. Gut microbiota alteration could represent a predisposing factor for obesity development, which has been associated with a low-grade inflammatory condition and an impaired antioxidant status. Besides, weight loss has been shown to influence the gut microbiota composition and reduce the inflammatory response and oxidative stress. Method: However, these insights in canine obesity have not been fully elucidated. The aim of this study was to assess the differences in serum and inflammatory parameters, antioxidant status, fecal microbiota and bacterial metabolites in 16 obese and 15 lean client-owned dogs and how these parameters in obese may be influenced by caloric restriction. First, for 30 days, all dogs received a high-protein, high-fiber diet in amounts to maintain their body weight; later, obese dogs were fed for 180 days the same diet in restricted amounts to promote weight loss. Results: Before the introduction of the experimental diet (T0), small differences in fecal microbial populations were detected between obese and lean dogs, but bacterial diversity and main bacterial metabolites did not differ. The fecal Dysbiosis Index (DI) was within the reference range (< 0) in most of dogs of both groups. Compared to lean dogs, obese dogs showed higher serum concentrations of acute-phase proteins, total thyroxine (TT4), and antioxidant capacity. Compared to T0, dietary treatment affected the fecal microbiota of obese dogs, decreasing the abundance of Firmicutes and increasing Bacteroides spp. However, these changes did not significantly affect the DI. The caloric restriction failed to exert significative changes on a large scale on bacterial populations. Consequently, the DI, bacterial diversity indices and metabolites were unaffected in obese dogs. Caloric restriction was not associated with a reduction of inflammatory markers or an improvement of the antioxidant status, while an increase of TT4 has been observed. Discussion: In summary, the present results underline that canine obesity is associated with chronic inflammation. This study highlights that changes on fecal microbiota of obese dogs induced by the characteristics of the diet should be differentiated from those that are the consequence of the reduced energy intake.
RESUMO
Human gut microbiota physiologically and actively participates as a symbiont to a wide number of fundamental biological processes, such as absorption and metabolism of nutrients, regulation of immune response and inflammation; gut microbiota plays also an antitumor role. However, dysbiosis, resulting from a number of different situations-dysmicrobism, infections, drug intake, age, diet-as well as from their multiple combinations, may lead to tumorigenesis and is associated with approximately 20% of all cancers. In a diagnostic, prognostic, therapeutic, and epidemiological perspective, it is clear that the bifaceted role of microbiota needs to be thoroughly studied and better understood. Here, we discuss the anti- and pro-tumorigenic potential of gut and other microbiota districts along with the causes that may change commensal bacteria from friend to foes.
RESUMO
Physical activity and diet are essential for maintaining good health and preventing the development of non-communicable diseases, especially in the older adults. One aspect that is often over-looked is the different response between men and women to exercise and nutrients. The body's response to exercise and to different nutrients as well as the choice of foods is different in the two sexes and is strongly influenced by the different hormonal ages in women. The present narrative review analyzes the effects of gender on nutrition and physical activity in older women. Understanding which components of diet and physical activity affect the health status of older women would help target non-pharmacological but lifestyle-related therapeutic interventions. It is interesting to note that this analysis shows a lack of studies dedicated to older women and a lack of studies dedicated to the interactions between diet and physical activity in women. Gender medicine is a current need that still finds little evidence.
RESUMO
The present study investigated in dogs the dietary effects of intact seaweeds on some fecal bacterial populations and metabolites, fecal IgA and apparent total tract digestibility (ATTD). Ten healthy adult dogs were enrolled in a 5 × 5 replicated Latin square design to evaluate five dietary treatments: control diet (CD); CD + Ascophyllum nodosum; CD + Undaria pinnatifida; CD + Saccharina japonica; CD + Palmaria palmata (n replicates per treatment = 10). Seaweeds were added to food at a daily dose of 15 g/kg. The CD contained silica as a digestion marker. Each feeding period lasted 28 d, with a 7 d wash-out in between. Feces were collected at days 21 and 28 of each period for chemical and microbiological analyses. Fecal samples were collected during the last five days of each period for ATTD assessment. Dogs showed good health conditions throughout the study. The fecal chemical parameters, fecal IgA and nutrient ATTD were not influenced by algal supplementation. Similarly, microbiological analyses did not reveal any effect by seaweed ingestion. In conclusion, algal supplementation at a dose of 15 g/kg of diet failed to exert noticeable effects on the canine fecal parameters evaluated in the present study.
RESUMO
Magnesium is an essential nutrient involved in many important processes in living organisms, including protein synthesis, cellular energy production and storage, cell growth and nucleic acid synthesis. In this study, we analysed the effect of magnesium deficiency on the proliferation of SaOS-2 osteosarcoma cells. When quiescent magnesium-starved cells were induced to proliferate by serum addition, the magnesium content was 2-3 times lower in cells maintained in a medium without magnesium compared with cells growing in the presence of the ion. Magnesium depletion inhibited cell cycle progression and caused the inhibition of cell proliferation, which was associated with mTOR hypophosphorylation at Serine 2448. In order to map the intracellular magnesium distribution, an analytical approach using synchrotron-based X-ray techniques was applied. When cell growth was stimulated, magnesium was mainly localized near the plasma membrane in cells maintained in a medium without magnesium. In non-proliferating cells growing in the presence of the ion, high concentration areas inside the cell were observed. These results support the role of magnesium in the control of cell proliferation, suggesting that mTOR may represent an important target for the antiproliferative effect of magnesium. Selective control of magnesium availability could be a useful strategy for inhibiting osteosarcoma cell growth.
Assuntos
Diagnóstico por Imagem , Espaço Intracelular/química , Magnésio/farmacologia , Osteossarcoma/diagnóstico por imagem , Osteossarcoma/patologia , Ciclo Celular/efeitos dos fármacos , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Humanos , Proteínas Associadas aos Microtúbulos/metabolismo , Fosforilação/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
Immunity is the consequence of a complex interaction between organs and the environment. It is mediated the interaction of several genes, receptors, molecules, hormones, cytokines, antibodies, antigens, and inflammatory mediators which in turn relate and influence the psychological health. The immune system response of heavily trained athletes resembles an even more complex conditions being theorized to follow a J or S shape dynamics at times. High training loads modify the immune response elevating the biological markers of immunity and the body susceptibility to infections. Heavy training and/or training in a cold environment increase the athletes' risk to develop Upper Respiratory Tract Infections (URTIs). Therefore, athletes, who are considered healthier than the normal population, are in fact more prone to infections of the respiratory tract, due to lowering of the immune system in the time frames subsequent heavy training sessions. In this revision we will review the behavioral intervention, including nutritional approaches, useful to minimize the "open window" effect on infection and how to cope with stressors and boost the immune system in athletes.
RESUMO
Both life span and health span are influenced by genetic, environmental and lifestyle factors. With the genetic influence on human life span estimated to be about 20-25%, epigenetic changes play an important role in modulating individual health status and aging. Thus, a main part of life expectance and healthy aging is determined by dietary habits and nutritional factors. Excessive or restricted food consumption have direct effects on health status. Moreover, some dietary interventions including a reduced intake of dietary calories without malnutrition, or a restriction of specific dietary component may promote health benefits and decrease the incidence of aging-related comorbidities, thus representing intriguing potential approaches to improve healthy aging. However, the relationship between nutrition, health and aging is still not fully understood as well as the mechanisms by which nutrients and nutritional status may affect health span and longevity in model organisms. The broad effect of different nutritional conditions on health span and longevity occurs through multiple mechanisms that involve evolutionary conserved nutrient-sensing pathways in tissues and organs. These pathways interacting each other include the evolutionary conserved key regulators mammalian target of rapamycin, AMP-activated protein kinase, insulin/insulin-like growth factor 1 pathway and sirtuins. In this review we provide a summary of the main molecular mechanisms by which different nutritional conditions, i.e., specific nutrient abundance or restriction, may affect health span and life span.
RESUMO
Selenium is an essential trace element that can modulate the gut microbiome with an impact on host health. The present study aimed to evaluate the effects of organic (selenium-enriched yeast) vs inorganic (sodium selenite) selenium source on fecal end-fermentation products and gut microbiome of puppies from 20 to 52 weeks of age. Alpha and beta diversity of the gut bacterial community were affected by age but not by gender or selenium source. The relative abundance of taxa was differently affected by age, and the DNA concentration of all selected bacterial groups increased with age, although total volatile fatty acids (VFA), acetate, propionate, caproate and lactate concentrations decreased. Organic selenium was associated with a higher concentration of total VFA, propionate and butyrate, a higher number of DNA copies of Lactobacillus, and a trend to lower DNA copies of Escherichia coli. Effects on fecal microbiome during growth differed with selenium source. Females had higher fecal end-fermentation products related to protein degradation, whereas males had higher DNA concentration of Bifidobacterium. Organic selenium might be beneficial over inorganic for dog food supplementation due to the positive modulation of the gut microbiome observed in puppies.
Assuntos
Microbioma Gastrointestinal , Microbiota , Selênio , Animais , Cães , Ácidos Graxos Voláteis , Fezes , Feminino , Fermentação , MasculinoRESUMO
The present study investigated the in vitro effects of tylosin (TYL), alone or associated with prebiotics (PRE), on selected canine fecal parameters. Eight treatments were set up: control diet with no addition of substrates; TYL; Fructooligosaccharides (FOS); Galactooligosaccharides (GOS); Xylooligosaccharides (XOS); TYL + FOS; TYL + GOS; TYL + XOS. The flasks (five for treatment), containing a canine fecal suspension (prepared with the feces of healthy adult dogs) and the residue of an in vitro digested dry dog food, were incubated in an anaerobic chamber at 39 °C. TYL and PRE were added at a concentration of 0.2 and 1 g/L, respectively. Samples were collected after 6 and 24 h for analyses. PRE decreased pH values, iso-butyrate, and iso-valerate throughout the incubation; increased lactobacilli, cadaverine, and, tendentiously, total volatile fatty acids after 6 h; increased n-butyrate, putrescine, spermidine, and reduced spermine and E. coli after 24 h. TYL resulted in lower total volatile fatty acids and lactobacilli and higher Clostridium cluster I after 6 h and higher pH values, spermidine, and E. coli throughout the study. When associated with TYL, PRE counteracted some undesirable effects of the antibiotic such as the decrease of lactobacilli and Clostridium cluster XIVa at both 6 and 24 h. In the present study, TYL exhibited inhibitory effects on canine fecal microbiota partially counteracted by PRE supplementation.
RESUMO
BACKGROUND: Feeding dogs with diets rich in protein may favor putrefactive fermentations in the hindgut, negatively affecting the animal's intestinal environment. Conversely, prebiotics may improve the activity of health-promoting bacteria and prevent bacterial proteolysis in the colon. The aim of this study was to evaluate the effects of dietary supplementation with fructooligosaccharides (FOS) on fecal microbiota and apparent total tract digestibility (ATTD) in dogs fed kibbles differing in protein content. Twelve healthy adult dogs were used in a 4 × 4 replicated Latin Square design to determine the effects of four diets: 1) Low protein diet (LP, crude protein (CP) 229 g/kg dry matter (DM)); 2) High protein diet (HP, CP 304 g/kg DM); 3) Diet 1 + 1.5 g of FOS/kg; 4) Diet 2 + 1.5 g of FOS/kg. The diets contained silica at 5 g/kg as a digestion marker. Differences in protein content were obtained using different amounts of a highly digestible swine greaves meal. Each feeding period lasted 28 d, with a 12 d wash-out in between periods. Fecal samples were collected from dogs at 0, 21 and 28 d of each feeding period. Feces excreted during the last five days of each feeding period were collected and pooled in order to evaluate ATTD. RESULTS: Higher fecal ammonia concentrations were observed both when dogs received the HP diets (p < 0.001) and the supplementation with FOS (p < 0.05). The diets containing FOS resulted in greater ATTD of DM, Ca, Mg, Na, Zn, and Fe (p < 0.05) while HP diets were characterized by lower crude ash ATTD (p < 0.05). Significant interactions were observed between FOS and protein concentration in regards to fecal pH (p < 0.05), propionic acid (p < 0.05), acetic to propionic acid and acetic + n-butyric to propionic acid ratios (p < 0.01), bifidobacteria (p < 0.05) and ATTD of CP (p < 0.05) and Mn (p < 0.001). CONCLUSIONS: A relatively moderate increase of dietary protein resulted in higher concentrations of ammonia in canine feces. Fructooligosaccharides displayed beneficial counteracting effects (such as increased bifidobacteria) when supplemented in HP diets, compared to those observed in LP diets and, in general, improved the ATTD of several minerals.
Assuntos
Proteínas Alimentares/farmacologia , Digestão/efeitos dos fármacos , Fezes/microbiologia , Oligossacarídeos/farmacologia , Amônia/análise , Ração Animal/análise , Animais , Suplementos Nutricionais , Cães/metabolismo , Cães/microbiologia , Cães/fisiologia , Fezes/química , Microbioma Gastrointestinal/genética , Trato Gastrointestinal/efeitos dos fármacos , Reação em Cadeia da Polimerase/veterináriaRESUMO
The in vitro effect of a Yucca schidigera extract (YSE) and tannins from chestnut wood on composition and metabolic activity of canine and feline faecal microbiota was evaluated. Four treatments were carried out: control diet, chestnut tannins (CT), YSE and CT + YSE. The YSE was added to canine and feline faecal cultures at 0.1 g/l, while CT were added at 0.3 g/l for a 24-h incubation. A total of 130 volatile compounds were detected by means of headspace-solid phase microextraction gas-chromatography/mass spectrometry analyses. Several changes in the metabolite profiles of fermentation fluids were found, including a decrease of alcohols (-19%) and esters (-42%) in feline and canine inoculum, respectively, which was due to the antibacterial properties of tannins. In canine inoculum, after 6 h, YSE + CT caused lower cadaverine concentrations (-37%), while ammonia (-4%) and quinolone (-27%) were reduced by addition of CT. After 24 h, the presence of CT resulted in a decrease of sulphur compounds, such as dimethyl sulphide (-69%) and dimethyl disulphide (-20%). In feline faecal cultures, after 6 h, CT lowered the amount of indole (-48%), whereas YSE tended to decrease trimethylamine levels (-16%). Both in canine and feline inoculum, addition of CT and, to a minor extent, YSE affected volatile fatty acids patterns. In canine faecal cultures, CT exerted a marginal inhibitory effect on Escherichia coli population (-0.45 log 10 numbers of DNA copies/ml), while enterococci were increased (+2.06 log 10 numbers of DNA copies/ml) by YSE. The results from the present study show that YSE and tannins from chestnut wood exert different effects on the composition and metabolism of canine and feline faecal microbiota. In particular, the supplementation of YSE and tannins to diets for dogs and cats may be beneficial due to the reduction of the presence of some potentially toxic volatile metabolites in the animals' intestine.