Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 10(1): 3077, 2020 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-32080219

RESUMO

c-di-GMP is a major player in the switch between biofilm and motile lifestyles. Several bacteria exhibit a large number of c-di-GMP metabolizing proteins, thus a fine-tuning of this nucleotide levels may occur. It is hypothesized that some c-di-GMP metabolizing proteins would provide the global c-di-GMP levels inside the cell whereas others would maintain a localized pool, with the resulting c-di-GMP acting at the vicinity of its production. Although attractive, this hypothesis has yet to be demonstrated in Pseudomonas aeruginosa. We found that the diguanylate cyclase DgcP interacts with the cytosolic region of FimV, a polar peptidoglycan-binding protein involved in type IV pilus assembly. Moreover, DgcP is located at the cell poles in wild type cells but scattered in the cytoplasm of cells lacking FimV. Overexpression of dgcP leads to the classical phenotypes of high c-di-GMP levels (increased biofilm and impaired motilities) in the wild-type strain, but not in a ΔfimV background. Therefore, our findings suggest that DgcP activity is regulated by FimV. The polar localization of DgcP might contribute to a local c-di-GMP pool that can be sensed by other proteins at the cell pole, bringing to light a specialized function for a specific diguanylate cyclase.


Assuntos
Proteínas de Bactérias/metabolismo , GMP Cíclico/análogos & derivados , Proteínas de Escherichia coli/metabolismo , Fósforo-Oxigênio Liases/metabolismo , Biofilmes , GMP Cíclico/metabolismo , Proteínas de Escherichia coli/química , Fímbrias Bacterianas/metabolismo , Modelos Biológicos , Mutação/genética , Fenótipo , Fósforo-Oxigênio Liases/química , Ligação Proteica , Domínios Proteicos , Pseudomonas aeruginosa/citologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Pseudomonas aeruginosa/fisiologia
2.
Phytopathology ; 109(8): 1344-1353, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30973310

RESUMO

Xylella fastidiosa releases outer membrane vesicles (OMVs) known to play a role in the systemic dissemination of this pathogen. OMVs inhibit bacterial attachment to xylem wall and traffic lipases/esterases that act on the degradation of plant cell wall. Here, we extended the characterization of X. fastidiosa OMVs by identifying proteins and metabolites potentially associated with OMVs produced by Temecula1, a Pierce's disease strain, and by 9a5c and Fb7, two citrus variegated chlorosis strains. These results strengthen that one of the OMVs multiple functions is to carry determinants of virulence, such as lipases/esterases, adhesins, proteases, porins, and a pectin lyase-like protein. For the first time, we show that the two citrus variegated chlorosis strains produce X. fastidiosa diffusible signaling factor 2 (DSF2) and citrus variegated chlorosis-DSF (likewise, Temecula1) and most importantly, that these compounds of the DSF (X. fastidiosa DSF) family are associated with OMV-enriched fractions. Altogether, our findings widen the potential functions of X. fastidiosa OMVs in intercellular signaling and host-pathogen interactions.


Assuntos
Citrus , Xylella , Citrus/microbiologia , Doenças das Plantas/microbiologia , Proteômica , Fatores de Virulência
3.
Metabolomics ; 14(8): 103, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-30830379

RESUMO

INTRODUCTION: Saccharomyces cerevisiae has been widely used for fermenting food and beverages for over thousands years. Its metabolism together with the substrate composition play an important role in determining the characteristics of the final fermented products. We previously showed that the polyunsaturated fatty acid, linoleic acid, which is present in the grape juice at trace levels, significantly affected the development of aroma compounds of the wines. However, the effect of linoleic acid on the overall cell metabolism of S. cerevisiae is still not clear. Therefore, we aimed to unlock the metabolic response of S. cerevisiae to linoleic acid using metabolomics and isotope labelling experiments. METHODS: We cultured the cells on a minimal mineral medium supplementing them with linoleic acid isomers and 13C-linoleic acid. Both intracellular and extracellular metabolite profiles were determined using gas chromatography coupled to mass spectrometry (GC-MS) to investigate which S. cerevisiae pathways were affected by linoleic acid supplementation. RESULTS: The utilisation of linoleic acid by S. cerevisiae had a significant impact on the primary carbon metabolism increasing the glucose consumption and the ethanol production under anaerobic condition. The energetic state of the cell was, therefore, affected and the glycolytic pathway, the TCA cycle and the amino acid production were up-regulated. We also observed that linoleic acid was transported into the cell and converted into other fatty acids affecting their profile even under anaerobic condition. CONCLUSION: Our data clearly shows that linoleic acid supplementation in growth medium increased glucose consumption and ethanol production by S. cerevisiae under anaerobic condition. We also suggest that S. cerevisiae might be able to perform an alternative anaerobic pathway to ß-oxidation, which has not been reported yet.


Assuntos
Carbono/metabolismo , Etanol/metabolismo , Glucose/metabolismo , Ácido Linoleico/metabolismo , Metabolômica/métodos , Oxigênio/metabolismo , Saccharomyces cerevisiae/metabolismo , Aerobiose , Anaerobiose , Fermentação , Cromatografia Gasosa-Espectrometria de Massas , Redes e Vias Metabólicas , Saccharomyces cerevisiae/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA