Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Life (Basel) ; 14(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38672695

RESUMO

Oxidative stress represents a hallmark for many degenerative pathologies of the Central Nervous System. Throughout life, the constant pressure of noxious stimuli and/or episodes of traumatic events may expose the brain to a microenvironment where the non-balanced reactive oxygen species inevitably lead to neuronal loss and cognitive decline. HO-1, a 32 kDa heat-shock protein catalyzing the degradation of heme into carbon monoxide (CO), iron and biliverdin/bilirubin is considered one of the main antioxidant defense mechanisms playing pivotal roles in neuroprotection. Restoring the redox homeostasis is the goal of many natural or synthetic antioxidant molecules pursuing beneficial effects on brain functions. Here, we investigated the antioxidant capacity of four selected benzofuran-2-one derivatives in a cellular model of neurodegeneration represented by differentiated SH-SY5Y cells exposed to catechol-induced oxidative stress. Our main results highlight how all the molecules have antioxidant properties, especially compound 9, showing great abilities in reducing intracellular ROS levels and protecting differentiated SH-SY5Y cells from catechol-induced death. This compound above all seems to boost HO-1 mRNA and perinuclear HO-1 protein isoform expression when cells are exposed to the oxidative insult. Our findings open the way to consider benzofuran-2-ones as a novel and promising adjuvant antioxidant strategy for many neurodegenerative disorders.

2.
J Insect Sci ; 22(3)2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-35762395

RESUMO

Cantharidin (CTD) is a defensive compound autogenously and exclusively produced by two phylogenetically related beetle families: Meloidae and Oedemeridae. Although this molecule usually acts as a strong deterrent against potential predators and parasites, some arthropod species, collectively named 'canthariphilous species', are attracted to CTD. Some species can sequester CTD from the CTD-producing species, using it as a chemical defense against enemies. The present paper focuses on the first-ever description of canthariphilous interactions between a checkered beetle species (Coleoptera: Cleridae) and a CTD -producing species. Field observations revealed individuals of the phytophagous beetle Tilloidea transversalis (Charpentier, 1825) (Coleoptera: Cleridae) biting individuals of the blister beetle Lydus trimaculatus (Fabricius, 1775) (Coleoptera: Meloidae). Laboratory behavioral experiments followed to verify if this peculiar behavior of T. transversalis also occurs on other co-occurring species. Moreover, chemical analyses were performed to assess whether T. transversalis can sequester CTD. Our results show that T. transversalis only attacks CTD-producing species. However, while chemical analyses prove that T. transversalis can sequester CTD from the hemolymph of L. trimaculatus, some clues (based on a CTD-baited traps sampling) suggest that this beetle, contrarily to other canthariphilous species, does not appear to show a high attraction to pure synthetic CTD. Thus, other unknown signals, alone or in combination with CTD, could be implicated in triggering the canthariphilous behaviors of T. transversalis.


Assuntos
Cantaridina , Besouros , Animais , Besouros/química , Hemolinfa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA