RESUMO
Interactions between bacteria and phytoplankton in the phycosphere facilitate and constrain biogeochemical cycling in aquatic ecosystems. Indole-3-acetic acid (IAA) is a bacterially produced chemical signal that promotes growth of phytoplankton and plants. Here, we explored the impact of IAA on bloom-forming cyanobacteria and their associated bacteria. Exposure to IAA and its precursor, tryptophan, resulted in a strong growth response in a bloom of the freshwater cyanobacterium, Microcystis. Metatranscriptome analysis revealed the induction of an antioxidant response in Microcystis upon exposure to IAA, potentially allowing populations to increase photosynthetic rate and overcome internally generated reactive oxygen. Our data reveal that co-occurring bacteria within the phycosphere microbiome exhibit a division of labor for supportive functions, such as nutrient mineralization and transport, vitamin synthesis, and reactive oxygen neutralization. These complex dynamics within the Microcystis phycosphere microbiome are an example of interactions within a microenvironment that can have ecosystem-scale consequences.
Assuntos
Cianobactérias , Ácidos Indolacéticos , Microbiota , Microcystis , Microcystis/fisiologia , Antioxidantes , Fitoplâncton , OxigênioRESUMO
Here we describe a publicly available environmental DNA (eDNA) sequence dataset, consisting of samples collected from a National Oceanic and Atmospheric Administration (NOAA) Great Lakes Environmental Research Laboratory (GLERL) on Lake Erie. We sequenced samples drawn from before, during, and after a 2019 Microcystis harmful algal bloom (HAB) using 3rd generation sequencing with the Oxford Nanopore MinION device. We classified the eDNA reads taxonomically, and estimated the abundances of all taxa in each sample. While the taxonomic data showed evidence of significant human and E. coli contamination, we found abundant Mycrocystis, especially in the samples drawn from bloom environments. The raw sequence data are available in the Sequence Read Archive (SRA) under accession number PRJNA812770. HABs pose a significant and increasing risk, both to human health and to the Blue Economy, and genomic approaches to early detection promise to help mitigate these risks. As such, this dataset could be of interest to freshwater ecology research teams, or any stakeholders interested in the detection and mitigation of HABs.
RESUMO
Microbial interactions in harmful algal bloom (HAB) communities have been examined in marine systems, but are poorly studied in fresh waters. To investigate HAB-microbe interactions, we isolated bacteria with close associations to bloom-forming cyanobacteria, Microcystis spp., during a 2017 bloom in the western basin of Lake Erie. The genomes of five isolates (Exiguobacterium sp. JMULE1, Enterobacter sp. JMULE2, Deinococcus sp. JMULE3, Paenibacillus sp. JMULE4, and Acidovorax sp. JMULE5.) were sequenced on a PacBio Sequel system. These genomes ranged in size from 3.1 Mbp (Exiguobacterium sp. JMULE1) to 5.7 Mbp (Enterobacter sp. JMULE2). The genomes were analyzed for genes relating to critical metabolic functions, including nitrogen reduction and carbon utilization. All five of the sequenced genomes contained genes that could be used in potential signaling and nutrient exchange between the bacteria and cyanobacteria such as Microcystis. Gene expression signatures of algal-derived carbon utilization for two isolates were identified in Microcystis blooms in Lake Erie and Lake Tai (Taihu) at low levels, suggesting these organisms are active and may have a functional role during Microcystis blooms in aggregates, but were largely missing from whole water samples. These findings build on the growing evidence that the bacterial microbiome associated with bloom-forming algae have the functional potential to contribute to nutrient exchange within bloom communities and interact with important bloom formers like Microcystis.
Assuntos
DNA Bacteriano/genética , Genoma Bacteriano , Proliferação Nociva de Algas/fisiologia , Metagenoma , Microcystis/genética , Percepção de Quorum/genética , Carbono/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Lagos/microbiologia , Microbiota/genética , Microcystis/classificação , Microcystis/metabolismo , Nitrogênio/metabolismo , Oxirredução , Filogenia , Transdução de Sinais , Estados UnidosRESUMO
Water bloom development due to eutrophication constitutes a case of niche specialization among planktonic cyanobacteria, but the genomic repertoire allowing bloom formation in only some species has not been fully characterized. We posited that the habitat relevance of a trait begets its underlying genomic complexity, so that traits within the repertoire would be differentially more complex in species successfully thriving in that habitat than in close species that cannot. To test this for the case of bloom-forming cyanobacteria, we curated 17 potentially relevant query metabolic pathways and five core pathways selected according to existing ecophysiological literature. The available 113 genomes were split into those of blooming (45) or nonblooming (68) strains, and an index of genomic complexity for each strain's version of each pathway was derived. We show that strain versions of all query pathways were significantly more complex in bloomers, with complexity in fact correlating positively with strain blooming incidence in 14 of those pathways. Five core pathways, relevant everywhere, showed no differential complexity or correlations. Gas vesicle, toxin and fatty acid synthesis, amino acid uptake, and C, N, and S acquisition systems were most strikingly relevant in the blooming repertoire. Further, we validated our findings using metagenomic gene expression analyses of blooming and nonblooming cyanobacteria in natural settings, where pathways in the repertoire were differentially overexpressed according to their relative complexity in bloomers, but not in nonbloomers. We expect that this approach may find applications to other habitats and organismal groups.IMPORTANCE We pragmatically delineate the trait repertoire that enables organismal niche specialization. We based our approach on the tenet, derived from evolutionary and complex-system considerations, that genomic units that can significantly contribute to fitness in a certain habitat will be comparatively more complex in organisms specialized to that habitat than their genomic homologs found in organisms from other habitats. We tested this in cyanobacteria forming harmful water blooms, for which decades-long efforts in ecological physiology and genomics exist. Our results essentially confirm that genomics and ecology can be linked through comparative complexity analyses, providing a tool that should be of general applicability for any group of organisms and any habitat, and enabling the posing of grounded hypotheses regarding the ecogenomic basis for diversification.
Assuntos
Cianobactérias/genética , Eutrofização , Perfilação da Expressão Gênica , Genoma Bacteriano , Lagos/microbiologia , Cianobactérias/fisiologia , Ecossistema , Genômica , Redes e Vias Metabólicas , Metagenômica , FenótipoRESUMO
Bacteria play key roles in the function and diversity of aquatic systems, but aside from study of specific bloom systems, little is known about the diversity or biogeography of bacteria associated with harmful cyanobacterial blooms (cyanoHABs). CyanoHAB species are known to shape bacterial community composition and to rely on functions provided by the associated bacteria, leading to the hypothesized cyanoHAB interactome, a coevolved community of synergistic and interacting bacteria species, each necessary for the success of the others. Here, we surveyed the microbiome associated with Microcystis aeruginosa during blooms in 12 lakes spanning four continents as an initial test of the hypothesized Microcystis interactome. We predicted that microbiome composition and functional potential would be similar across blooms globally. Our results, as revealed by 16S rRNA sequence similarity, indicate that M. aeruginosa is cosmopolitan in lakes across a 280° longitudinal and 90° latitudinal gradient. The microbiome communities were represented by a wide range of operational taxonomic units and relative abundances. Highly abundant taxa were more related and shared across most sites and did not vary with geographic distance, thus, like Microcystis, revealing no evidence for dispersal limitation. High phylogenetic relatedness, both within and across lakes, indicates that microbiome bacteria with similar functional potential were associated with all blooms. While Microcystis and the microbiome bacteria shared many genes, whole-community metagenomic analysis revealed a suite of biochemical pathways that could be considered complementary. Our results demonstrate a high degree of similarity across global Microcystis blooms, thereby providing initial support for the hypothesized Microcystis interactome.
RESUMO
[This corrects the article DOI: 10.3389/fmicb.2019.00703.].
RESUMO
Some giant viruses are ecological agents that are predicted to be involved in the top-down control of single-celled eukaryotic algae populations in aquatic ecosystems. Despite an increased interest in giant viruses since the discovery and characterization of Mimivirus and other viral giants, little is known about their physiology and ecology. In this study, we characterized the genome and functional potential of a giant virus that infects the freshwater haptophyte Chrysochromulina parva, originally isolated from Lake Ontario. This virus, CpV-BQ2, is a member of the nucleo-cytoplasmic large DNA virus (NCLDV) group and possesses a 437 kb genome encoding 503 ORFs with a GC content of 25%. Phylogenetic analyses of core NCLDV genes place CpV-BQ2 amongst the emerging group of algae-infecting Mimiviruses informally referred to as the "extended Mimiviridae," making it the first virus of this group to be isolated from a freshwater ecosystem. During genome analyses, we also captured and described the genomes of three distinct virophages that co-occurred with CpV-BQ2 and likely exploit CpV for their own replication. These virophages belong to the polinton-like viruses (PLV) group and encompass 19-23 predicted genes, including all of the core PLV genes as well as several genes implicated in genome modifications. We used the CpV-BQ2 and virophage reference sequences to recruit reads from available environmental metatranscriptomic data to estimate their activity in fresh waters. We observed moderate recruitment of both virus and virophage transcripts in samples obtained during Microcystis aeruginosa blooms in Lake Erie and Lake Tai, China in 2013, with a spike in activity in one sample. Virophage transcript abundance for two of the three isolates strongly correlated with that of the CpV-BQ2. Together, the results highlight the importance of giant viruses in the environment and establish a foundation for future research on the physiology and ecology CpV-BQ2 as a model system for algal Mimivirus dynamics in freshwaters.
RESUMO
Microcystins are potent hepatotoxins that are frequently detected in fresh water lakes plagued by toxic cyanobacteria. Microbial biodegradation has been referred to as the most important avenue for removal of microcystin from aquatic environments. The biochemical pathway most commonly associated with the degradation of microcystin is encoded by the mlrABCD (mlr) cassette. The ecological significance of this pathway remains unclear as no studies have examined the expression of these genes in natural environments. Six metatranscriptomes were generated from microcystin-producing Microcystis blooms and analyzed to assess the activity of this pathway in environmental samples. Seventy-eight samples were collected from Lake Erie, United States/Canada and Lake Tai (Taihu), China, and screened for the presence of mlr gene transcripts. Read mapping to the mlr cassette indicated transcripts for these genes were absent, with only 77 of the collective 3.7 billion reads mapping to any part of the mlr cassette. Analysis of the assembled metatranscriptomes supported this, with only distantly related sequences identified as mlrABC-like. These observations were made despite the presence of microcystin and over 500,000 reads mapping to the mcy cassette for microcystin production. Glutathione S-transferases and alkaline proteases have been previously hypothesized to be alternative pathways for microcystin biodegradation, and expression of these genes was detected across space and time in both lakes. While the activity of these alternative pathways needs to be experimentally confirmed, they may be individually or collectively more important than mlr genes in the natural environment. Importantly, the lack of mlr expression could indicate microcystin biodegradation was not occurring in the analyzed samples. This study raises interesting questions about the ubiquity, specificity and locality of microcystin biodegradation, and highlights the need for the characterization of relevant mechanisms in natural communities to understand the fate of microcystin in the environment and risk to public health.
RESUMO
Microcystis aeruginosa is a freshwater bloom-forming cyanobacterium capable of producing the potent hepatotoxin, microcystin. Despite increased interest in this organism, little is known about the viruses that infect it and drive nutrient mobilization and transfer of genetic material between organisms. The genomic complement of sequenced phage suggests these viruses are capable of integrating into the host genome, though this activity has not been observed in the laboratory. While analyzing RNA-sequence data obtained from Microcystis blooms in Lake Tai (Taihu, China), we observed that a series of lysogeny-associated genes were highly expressed when genes involved in lytic infection were down-regulated. This pattern was consistent, though not always statistically significant, across multiple spatial and temporally distinct samples. For example, samples from Lake Tai (2014) showed a predominance of lytic virus activity from late July through October, while genes associated with lysogeny were strongly expressed in the early months (June-July) and toward the end of bloom season (October). Analyses of whole phage genome expression shows that transcription patterns are shared across sampling locations and that genes consistently clustered by co-expression into lytic and lysogenic groups. Expression of lytic-cycle associated genes was positively correlated to total dissolved nitrogen, ammonium concentration, and salinity. Lysogeny-associated gene expression was positively correlated with pH and total dissolved phosphorous. Our results suggest that lysogeny may be prevalent in Microcystis blooms and support the hypothesis that environmental conditions drive switching between temperate and lytic life cycles during bloom proliferation.
Assuntos
Bacteriófagos/genética , Eutrofização , Lisogenia/genética , Microcystis/virologia , Transcriptoma/genética , Meio Ambiente , Perfilação da Expressão Gênica , Regulação Viral da Expressão Gênica , Genoma Viral , FilogeniaRESUMO
Annual cyanobacterial blooms dominated by Microcystis have occurred in western Lake Erie (U.S./Canada) during summer months since 1995. The production of toxins by bloom-forming cyanobacteria can lead to drinking water crises, such as the one experienced by the city of Toledo in August of 2014, when the city was rendered without drinking water for >2 days. It is important to understand the conditions and environmental cues that were driving this specific bloom to provide a scientific framework for management of future bloom events. To this end, samples were collected and metatranscriptomes generated coincident with the collection of environmental metrics for eight sites located in the western basin of Lake Erie, including a station proximal to the water intake for the city of Toledo. These data were used to generate a basin-wide ecophysiological fingerprint of Lake Erie Microcystis populations in August 2014 for comparison to previous bloom communities. Our observations and analyses indicate that, at the time of sample collection, Microcystis populations were under dual nitrogen (N) and phosphorus (P) stress, as genes involved in scavenging of these nutrients were being actively transcribed. Targeted analysis of urea transport and hydrolysis suggests a potentially important role for exogenous urea as a nitrogen source during the 2014 event. Finally, simulation data suggest a wind event caused microcystin-rich water from Maumee Bay to be transported east along the southern shoreline past the Toledo water intake. Coupled with a significant cyanophage infection, these results reveal that a combination of biological and environmental factors led to the disruption of the Toledo water supply. This scenario was not atypical of reoccurring Lake Erie blooms and thus may reoccur in the future.
Assuntos
Microcystis , Abastecimento de Água , Canadá , Cianobactérias , Eutrofização , LagosRESUMO
This review summarizes the present state of knowledge regarding the toxic, bloom-forming cyanobacterium, Microcystis, with a specific focus on its geographic distribution, toxins, genomics, phylogeny, and ecology. A global analysis found documentation suggesting geographic expansion of Microcystis, with recorded blooms in at least 108 countries, 79 of which have also reported the hepatatoxin microcystin. The production of microcystins (originally "Fast-Death Factor") by Microcystis and factors that control synthesis of this toxin are reviewed, as well as the putative ecophysiological roles of this metabolite. Molecular biological analyses have provided significant insight into the ecology and physiology of Microcystis, as well as revealed the highly dynamic, and potentially unstable, nature of its genome. A genetic sequence analysis of 27 Microcystis species, including 15 complete/draft genomes are presented. Using the strictest biological definition of what constitutes a bacterial species, these analyses indicate that all Microcystis species warrant placement into the same species complex since the average nucleotide identity values were above 95%, 16S rRNA nucleotide identity scores exceeded 99%, and DNA-DNA hybridization was consistently greater than 70%. The review further provides evidence from around the globe for the key role that both nitrogen and phosphorus play in controlling Microcystis bloom dynamics, and the effect of elevated temperature on bloom intensification. Finally, highlighted is the ability of Microcystis assemblages to minimize their mortality losses by resisting grazing by zooplankton and bivalves, as well as viral lysis, and discuss factors facilitating assemblage resilience.
Assuntos
Ecossistema , Genoma Bacteriano/genética , Microcystis/fisiologia , Animais , Genômica , Microcystis/genética , Filogeografia , RNA Ribossômico 16S/genéticaRESUMO
Lake Erie supplies drinking water to more than 11 million consumers, processes millions of gallons of wastewater, provides important species habitat and supports a substantial industrial sector, with >$50 billion annual income to tourism, recreational boating, shipping, fisheries, and other industries. These and other key ecosystem services are currently threatened by an excess supply of nutrients, manifested in particular by increases in the magnitude and extent of harmful planktonic and benthic algal blooms (HABs) and hypoxia. Widespread concern for this important international waterbody has been manifested in a strong focus of scientific and public material on the subject, and commitments for Canada-US remedial actions in recent agreements among Federal, Provincial and State agencies. This review provides a retrospective synthesis of past and current nutrient inputs, impairments by planktonic and benthic HABs and hypoxia, modelling and Best Management Practices in the Lake Erie basin. The results demonstrate that phosphorus reduction is of primary importance, but the effects of climate, nitrogen and other factors should also be considered in the context of adaptive management. Actions to reduce nutrient levels by targeted Best Management Practices will likely need to be tailored for soil types, topography, and farming practices.
Assuntos
Eutrofização , Lagos/microbiologia , Anaerobiose , Animais , Canadá , Cianobactérias , Monitoramento Ambiental , Proliferação Nociva de Algas , Nitrogênio , FósforoRESUMO
Little is known about the molecular and physiological function of co-occurring microbes within freshwater cyanobacterial harmful algal blooms (cHABs). To address this, community metatranscriptomes collected from the western basin of Lake Erie during August 2012 were examined. Using sequence data, we tested the hypothesis that the activity of the microbial community members is independent of community structure. Predicted metabolic and physiological functional profiles from spatially distinct metatranscriptomes were determined to be ≥90% similar between sites. Targeted analysis of Microcystis aeruginosa, the historical causative agent of cyanobacterial harmful algal blooms over the past â¼20 years, as well as analysis of Planktothrix agardhii and Anabaena cylindrica, revealed ongoing transcription of genes involved in microcystin toxin synthesis as well as the acquisition of both nitrogen and phosphorus, nutrients often implicated as independent bottom-up drivers of eutrophication in aquatic systems. Transcription of genes involved in carbon dioxide (CO2) concentration and metabolism also provided support for the alternate hypothesis that high-pH conditions and dense algal biomass result in CO2-limiting conditions that further favor cyanobacterial dominance. Additionally, the presence of Microcystis-specific cyanophage sequences provided preliminary evidence of possible top-down virus-mediated control of cHAB populations. Overall, these data provide insight into the complex series of constraints associated with Microcystis blooms that dominate the western basin of Lake Erie during summer months, demonstrating that multiple environmental factors work to shape the microbial community.
Assuntos
Biota , Cianobactérias/crescimento & desenvolvimento , Água Doce/microbiologia , Bacteriófagos/crescimento & desenvolvimento , Cianobactérias/virologia , Eutrofização , Perfilação da Expressão Gênica , Lagos/microbiologia , Metagenômica , Dados de Sequência Molecular , Análise de Sequência de DNA , Estados UnidosRESUMO
The cyanobacterium Microcystis aeruginosa is a globally distributed bloom-forming organism that degrades freshwater systems around the world. Factors that drive its dispersion, diversification and success remain, however, poorly understood. To develop insight into cellular-level responses to nutrient drivers of eutrophication, RNA sequencing was coupled to a comprehensive metabolomics survey of M. aeruginosa sp. NIES 843 grown in various nutrient-reduced conditions. Transcriptomes were generated for cultures grown in nutrient-replete (with nitrate as the nitrogen (N) source), nitrogen-reduced (with nitrate, urea or ammonium acting as the N sources) and phosphate-reduced conditions. Extensive expression differences (up to 696 genes for urea-grown cells) relative to the control treatment were observed, demonstrating that the chemical variant of nitrogen available to cells affected transcriptional activity. Of particular note, a high number of transposase genes (up to 81) were significantly and reproducibly up-regulated relative to the control when grown on urea. Conversely, phosphorus (P) reduction resulted in a significant cessation in transcription of transposase genes, indicating that variation in nutrient chemistry may influence transcription of transposases and may impact the highly mosaic genomic architecture of M. aeruginosa. Corresponding metabolomes showed comparably few differences between treatments, suggesting broad changes to gene transcription are required to maintain metabolic homeostasis under nutrient reduction. The combined observations provide novel and extensive insight into the complex cellular interactions that take place in this important bloom-forming organism during variable nutrient conditions and highlight a potential unknown molecular mechanism that may drive Microcystis blooms and evolution.
Assuntos
Microcystis/genética , Transcriptoma , Genoma Bacteriano , Homeostase , Microcystis/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo , Fósforo/metabolismo , Análise de Sequência de RNARESUMO
Toxic cyanobacterial blooms have persisted in freshwater systems around the world for centuries and appear to be globally increasing in frequency and severity. Toxins produced by bloom-associated cyanobacteria can have drastic impacts on the ecosystem and surrounding communities, and bloom biomass can disrupt aquatic food webs and act as a driver for hypoxia. Little is currently known regarding the genomic content of the Microcystis strains that form blooms or the companion heterotrophic community associated with bloom events. To address these issues, we examined the bloom-associated microbial communities in single samples from Lake Erie (North America), Lake Tai (Taihu, China), and Grand Lakes St. Marys (OH, USA) using comparative metagenomics. Together the Cyanobacteria and Proteobacteria comprised >90% of each bloom bacterial community sample, although the dominant phylum varied between systems. Relative to the existing Microcystis aeruginosa NIES 843 genome, sequences from Lake Erie and Taihu revealed a number of metagenomic islands that were absent in the environmental samples. Moreover, despite variation in the phylogenetic assignments of bloom-associated organisms, the functional potential of bloom members remained relatively constant between systems. This pattern was particularly noticeable in the genomic contribution of nitrogen assimilation genes. In Taihu, the genetic elements associated with the assimilation and metabolism of nitrogen were predominantly associated with Proteobacteria, while these functions in the North American lakes were primarily contributed to by the Cyanobacteria. Our observations build on an emerging body of metagenomic surveys describing the functional potential of microbial communities as more highly conserved than that of their phylogenetic makeup within natural systems.