Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
NMR Biomed ; 37(6): e5118, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38342102

RESUMO

Parallel imaging is one of the key MRI technologies that allow reduction of image acquisition time. However, the parallel imaging reconstruction commonly leads to a signal-to-noise ratio (SNR) drop evaluated using a so-called geometrical factor (g-factor). The g-factor is minimized by increasing the number of array elements and their spatial diversity. At the same time, increasing the element count requires a decrease in their size. This may lead to insufficient coil loading, an increase in the relative noise contribution from the RF coil itself, and hence SNR reduction. Previously, instead of increasing the channel number, we introduced the concept of electronically switchable time-varying sensitivities, which was shown to improve parallel imaging performance. In this approach, each reconfigurable receive element supports two spatially distinct sensitivity profiles. In this work, we developed and evaluated a novel eight-element human head receive-only reconfigurable coaxial dipole array for human head imaging at 9.4 T. In contrast to the previously reported reconfigurable dipole array, the new design does not include direct current (DC) control wires connected directly to the dipoles. The coaxial cable itself is used to deliver DC voltage to the PIN diodes located at the ends of the antennas. Thus, the novel reconfigurable coaxial dipole design opens a way to scale the dynamic parallel imaging up to a realistic number of channels, that is, 32 and above. The novel array was optimized and tested experimentally, including in vivo studies. It was found that dynamic sensitivity switching provided an 8% lower mean and 33% lower maximum g-factor (for Ry × Rz = 2 × 2 acceleration) compared with conventional static sensitivities.


Assuntos
Imageamento por Ressonância Magnética , Razão Sinal-Ruído , Imageamento por Ressonância Magnética/instrumentação , Humanos , Imagens de Fantasmas , Desenho de Equipamento , Encéfalo/diagnóstico por imagem
2.
Magn Reson Med ; 90(4): 1713-1727, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37332195

RESUMO

PURPOSE: To extend the concept of 3D dynamic parallel imaging, we developed a prototype of an electronically reconfigurable dipole array that provides sensitivity alteration along the dipole length. METHODS: We developed a radiofrequency array coil consisting of eight reconfigurable elevated-end dipole antennas. The receive sensitivity profile of each dipole can be electronically shifted toward one or the other end by electrical shortening or lengthening the dipole arms using positive-intrinsic-negative-diode lump-element switching units. Based on the results of electromagnetic simulations, we built the prototype and tested it at 9.4 T on phantom and healthy volunteer. A modified 3D SENSE reconstruction was used, and geometry factor (g-factor) calculations were performed to assess the new array coil. RESULTS: Electromagnetic simulations showed that the new array coil was capable of alteration of its receive sensitivity profile along the dipole length. Electromagnetic and g-factor simulations showed closely agreeing predictions when compared to the measurements. The new dynamically reconfigurable dipole array provided significant improvement in geometry factor compared to static dipoles. We obtained up to 220% improvement for 3 × 2 (Ry × Rz ) acceleration compared to the static configuration case in terms of maximum g-factor and up to 54% in terms of mean g-factor for the same acceleration. CONCLUSION: We presented an 8-element prototype of a novel electronically reconfigurable dipole receive array that permits rapid sensitivity modulations along the dipole axes. Applying dynamic sensitivity modulation during image acquisition emulates two virtual rows of receive elements along the z-direction, and therefore improves parallel imaging performance for 3D acquisitions.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Desenho de Equipamento , Imageamento Tridimensional , Imagens de Fantasmas , Ondas de Rádio
3.
Magn Reson Med ; 88(2): 742-756, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35452153

RESUMO

PURPOSE: To investigate how electronically modulated time-varying receive sensitivities can improve parallel imaging reconstruction at ultra-high field. METHODS: Receive sensitivity modulation was achieved by introducing PIN diodes in the receive loops, which allow rapid switching of capacitances in both arms of each loop coil and by that alter B1- profiles, resulting in two distinct receive sensitivity configurations. A prototype 8-channel reconfigurable receive coil for human head imaging at 9.4T was built, and MR measurements were performed in both phantom and human subject. A modified SENSE reconstruction for time-varying sensitivities was formulated, and g-factor calculations were performed to investigate how modulation of receive sensitivity profiles during image encoding can improve parallel imaging reconstruction. The optimized modulation pattern was realized experimentally, and reconstructions with the time-varying sensitivities were compared with conventional static SENSE reconstructions. RESULTS: The g-factor calculations showed that fast modulation of receive sensitivities in the order of the ADC dwell time during k-space acquisition can improve parallel imaging performance, as this effectively makes spatial information of both configurations simultaneously available for image encoding. This was confirmed by in vivo measurements, for which lower reconstruction errors (SSIM = 0.81 for acceleration R = 4) and g-factors (max g = 2.4; R = 4) were observed for the case of rapidly switched sensitivities compared to conventional reconstruction with static sensitivities (SSIM = 0.74 and max g = 3.2; R = 4). As the method relies on the short RF wavelength at ultra-high field, it does not yield significant benefits at 3T and below. CONCLUSIONS: Time-varying receive sensitivities can be achieved by inserting PIN diodes in the receive loop coils, which allow modulation of B1- patterns. This offers an additional degree of freedom for image encoding, with the potential for improved parallel imaging performance at ultra-high field.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Aceleração , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
4.
Magn Reson Med ; 82(3): 877-885, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025413

RESUMO

PURPOSE: A novel method for the acceleration of MRI acquisition is proposed that relies on the local modulation of magnetic fields. These local modulations provide additional spatial information for image reconstruction that is used to accelerate image acquisition. METHODS: In experiments and simulations, eight local coils connected to current amplifiers were used for rapid local magnetic field variation. Acquired and simulated data were reconstructed to quantify reconstruction errors as a function of the acceleration factor and applied modulation frequency and strength. RESULTS: Experimental results demonstrate a possible acceleration factor of 2 to 4. Simulations demonstrate the challenges and limits of this method in terms of required magnetic field modulation strengths and frequencies. A normalized mean squared error of below 10% can be achieved for acceleration factors of up to 8 using modulation field strengths comparable to the readout gradient strength at modulation frequencies in the range of 5 to 20 kHz. CONCLUSION: Spread-spectrum MRI represents a new approach to accelerate image acquisition, and it can be independently combined with traditional parallel imaging techniques based on local receive coil sensitivities.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Aceleração , Algoritmos , Imagens de Fantasmas
5.
Magn Reson Med ; 80(4): 1714-1725, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29424461

RESUMO

PURPOSE: A 16-channel multi-coil shimming setup was developed to mitigate severe B0 field perturbations at ultrahigh field and improve data quality for human brain imaging and spectroscopy. METHODS: The shimming setup consisted of 16 circular B0 coils that were positioned symmetrically on a cylinder with a diameter of 370 mm. The latter was large enough to house a shielded 18/32-channel RF transceiver array. The shim performance was assessed via simulations and phantom as well as in vivo measurements at 9.4 T. The global and dynamic shimming performance of the multi-coil setup was compared with the built-in scanner shim system for EPI and single voxel spectroscopy. RESULTS: The presence of the multi-coil shim did not influence the performance of the RF coil. The performance of the proposed setup was similar to a full third-order spherical harmonic shim system in the case of global static and dynamic slice-wise shimming. Dynamic slice-wise shimming with the multi-coil setup outperformed global static shimming with the scanner's second-order spherical-harmonic shim. The multi-coil setup allowed mitigating geometric distortions for EPI. The combination of the multi-coil shim setup with the zeroth and first-order shim of the scanner further reduced the standard deviation of the B0 field in the brain by 12% compared with the case in which multi-coil was used exclusively. CONCLUSION: The combination of a multi-coil setup and the linear shim channels of the scanner provides a straightforward solution for implementing dynamic slice-wise shimming without requiring an additional pre-emphasis setup.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem Ecoplanar/instrumentação , Imagem Ecoplanar/métodos , Processamento de Imagem Assistida por Computador/métodos , Adulto , Desenho de Equipamento , Humanos , Imagens de Fantasmas , Processamento de Sinais Assistido por Computador , Adulto Jovem
6.
Rev Sci Instrum ; 89(12): 125103, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30599552

RESUMO

Ultralow-field (ULF) nuclear magnetic resonance spectroscopy (MRS) and magnetic resonance imaging (MRI) are promising spectroscopy and imaging methods allowing for, e.g., the simultaneous detection of multiple nuclei or imaging in the vicinity of metals. To overcome the inherently low signal-to-noise ratio that usually hampers a wider application, we present an alternative approach to prepolarized ULF MRS employing hyperpolarization techniques like signal amplification by reversible exchange (SABRE) or Overhauser dynamic nuclear polarization (ODNP). Both techniques allow continuous hyperpolarization of 1H as well as other MR-active nuclei. For the implementation, a superconducting quantum interference device (SQUID)-based ULF MRS/MRI detection scheme was constructed. Due to the very low intrinsic noise level, SQUIDs are superior to conventional Faraday detection coils at ULFs. Additionally, the broadband characteristics of SQUIDs enable them to simultaneously detect the MR signal of different nuclei such as 13C, 19F, or 1H. Since SQUIDs detect the MR signal directly, they are an ideal tool for a quantitative investigation of hyperpolarization techniques such as SABRE or ODNP.

7.
Neuroimage ; 45(4): 1080-9, 2009 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-19344685

RESUMO

Brains are restless. We have long known of the existence of a great deal of uninterrupted brain activity that maintains the body in a stable state--from an evolutionary standpoint one of the brain's most ancient tasks. But intrinsic, ongoing activity is not limited to subcortical, life-maintaining structures; cortex, too, is remarkably active even in the absence of a sensory stimulus or a specific behavioral task. This is evident both in its enormous energy consumption at rest and in the large, spontaneous but coherent fluctuations of neural activity that spread across different areas. Not surprisingly, a growing number of electrophysiological and functional magnetic resonance imaging (fMRI) studies are appearing that report on various aspects of the brain's spontaneous activity or "default mode" of operation. One recent study reports results from simultaneously combined electrophysiological and fMRI measurements in the monkey visual cortex (Shmuel, A., Leopold, D.A., 2008. Neuronal correlates of spontaneous fluctuations in fMRI signals in monkey visual cortex: implications for functional connectivity at rest. Hum. Brain Mapp. 29, 751-761). The authors claim to be able to demonstrate correlations between slow fluctuations in blood-oxygen-level-dependent (BOLD) signals and concurrent fluctuations in the underlying, locally measured neuronal activity. They even go on to speculate that the fluctuations display wave-like spatiotemporal patterns across cortex. In the present report, however, we re-analyze the data presented in that study and demonstrate that the measurements were not actually taken during rest. Visual cortex was subject to almost imperceptible but physiologically clearly detectable flicker induced by the visual stimulator. An examination of the power spectral density of the neural responses and the neurovascular impulse response function shows that such imperceptible flicker strongly suppresses the slow oscillations and changes the degree of covariance between neural and vascular signals. In addition, a careful analysis of the spatiotemporal patterns demonstrates that no slow waves of activity exist in visual cortex; instead, the presented wave data reflect differences in signal-to-noise ratio at various cortical sites due to local differences in vascularization. In this report, assuming that the term "spontaneous activity" refers to intrinsic physiological processes at the absence of sensory inputs or motor outputs, we discuss the need for careful selection of experimental protocols and of examining the degree to which the activation of sensory areas might influence the cortical or subcortical processes in other brain regions.


Assuntos
Artefatos , Mapeamento Encefálico/métodos , Potenciais Evocados/fisiologia , Imageamento por Ressonância Magnética/métodos , Estimulação Luminosa/métodos , Córtex Visual/fisiologia , Percepção Visual/fisiologia , Animais , Haplorrinos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA