Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
1.
J Am Chem Soc ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959425

RESUMO

We report an electrochemical method for doping two-dimensional (2D) superatomic semiconductor Re6Se8Cl2 that significantly improves the material's electrical transport while retaining the in-plane and stacking structures. The electrochemical reduction induces the complete dissociation of chloride anions from the surface of each superatomic nanosheet. After the material is dehalogenated, we observe the electrical conductivity (σ) increases by two orders of magnitude while the 3D electron carrier density (n3D) increases by three orders of magnitude. In addition, the thermal activation energy (Ea) and electron mobility (µe) decrease. We conclude that we have achieved effective electron-doping in 2D superatomic Re6Se8Cl2, which significantly improves the electrical transport properties. Our work sets the foundation for electrochemically doping and tuning the transport properties of other 2D superatomic materials.

2.
J Am Chem Soc ; 146(6): 3646-3650, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38293735

RESUMO

The successful incorporation of molecules as active circuit elements relies on the ability to tune their electronic properties through chemical design. A synthetic strategy that has been used to manipulate and gate circuit conductance involves attaching a pendant substituent along the molecular conduction pathway. However, such a chemical gate has not yet been shown to significantly modify conductance. Here, we report a novel series of triarylmethylium and triangulenium carbocations gated by different substituents coupled to the delocalized conducting orbitals on the molecular backbone through a Fano resonance. By changing the pendant substituents to modulate the position of the Fano resonance and its coupling to the conducting orbitals, we can regulate the junction conductance by a remarkable factor of 450. This work thus provides a new design principle to enable effective chemical gating of single-molecule devices toward effective molecular transistors.

3.
Chemphyschem ; 25(2): e202300064, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38057144

RESUMO

Molecular clusters can function as nanoscale atoms/superatoms, assembling into superatomic solids, a new class of solid-state materials with designable properties through modifications on superatoms. To explore possibilities on diversifying building blocks, here we thoroughly studied one representative superatom, Co6 Se8 (PEt3 )6 . We probed its structural, electronic, and magnetic properties and revealed its detailed electronic structure as valence electrons delocalize over inorganic [Co6 Se8 ] core while ligands function as an insulated shell. 59 Co SSNMR measurements on the core and 31 P, 13 C on the ligands show that the neutral Co6 Se8 (PEt3 )6 is diamagnetic and symmetric, with all ligands magnetically equivalent. Quantum computations cross-validate NMR results and reveal degenerate delocalized HOMO orbitals, indicating aromaticity. Ligand substitution keeps the inorganic core nearly intact. After losing one electron, the unpaired electron in [Co6 Se8 (PEt3 )6 ]+1 is delocalized, causing paramagnetism and a delocalized electron spin. Notably, this feature of electron/spin delocalization over a large cluster is attractive for special single-electron devices.

4.
J Am Chem Soc ; 146(1): 51-56, 2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38110244

RESUMO

Here we unveil a chiral molecular redox switch derived from PDI-based twistacenes─chPDI[2] that has the remarkable attributes of high-intensity and a broadband chiral response. This material exhibits facile, stable, and reversible multistate chiroptical switching behavior over a broad active wavelength range close to 700 nm, encompassing ultraviolet, visible, and near-infrared regions. Upon reduction, chPDI[2] exhibits a substantial increase in the amplitude of its circular dichroic response, with an outstanding |ΔΔε| > 300 M-1 cm-1 and a high dissymmetry factor of 3 × 10-2 at 960 nm. DFT calculations suggest that the long wavelength CD signal for doubly reduced chPDI[2] originates from excitation of the PDI backbone to the π* orbital of the bridging alkene. Importantly, the dimer's molecular contortion facilitates ionic diffusion, enabling chiral switching in solid state films. The high dissymmetry factors and near-infrared response establish chPDI[2] as a unique chiroptic switch.

5.
Nano Lett ; 23(22): 10449-10457, 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-37934894

RESUMO

Two-dimensional antiferromagnets have garnered considerable interest for the next generation of functional spintronics. However, many bulk materials from which two-dimensional antiferromagnets are isolated are limited by their air sensitivity, low ordering temperatures, and insulating transport properties. TaFe1+yTe3 aims to address these challenges with increased air stability, metallic transport, and robust antiferromagnetism. Here, we synthesize TaFe1+yTe3 (y = 0.14), identify its structural, magnetic, and electronic properties, and elucidate the relationships between them. Axial-dependent high-field magnetization measurements on TaFe1.14Te3 reveal saturation magnetic fields ranging between 27 and 30 T with saturation magnetic moments of 2.05-2.12 µB. Magnetotransport measurements confirm that TaFe1.14Te3 is metallic with strong coupling between magnetic order and electronic transport. Angle-resolved photoemission spectroscopy measurements across the magnetic transition uncover a complex interplay between itinerant electrons and local magnetic moments that drives the magnetic transition. We demonstrate the ability to isolate few-layer sheets of TaFe1.14Te3, establishing TaFe1.14Te3 as a potential platform for two-dimensional spintronics.

6.
J Am Chem Soc ; 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37023032

RESUMO

We advance the chemistry of apical chlorine substitution in the 2D superatomic semiconductor Re6Se8Cl2 to build functional and atomically precise monolayers on the surface of the 2D superatomic Re6Se8 substrate. We create a functional monolayer by installing surface (2,2'-bipyridine)-4-sulfide (Sbpy) groups that chelate to catalytically active metal complexes. Through this reaction chemistry, we can create monolayers where we can control the distribution of catalytic sites. As a demonstration, we create highly active electrocatalysts for the oxygen evolution reaction using monolayers of cobalt(acetylacetonate)2bipyridine. We can further produce a series of catalysts by incorporating organic spacers in the functional monolayers. The structure and flexibility of the surface linkers can affect the catalytic performance, possibly by tuning the coupling between the functional monolayer and the superatomic substrate. These studies establish that the Re6Se8 sheet behaves as a chemical pegboard: a surface amenable to geometrically and chemically well-defined modification to yield functional monolayers, in this case catalytically active, that are atomically precise. This is an effective method to generate diverse families of functional nanomaterials.

7.
Chem Sci ; 14(7): 1769-1774, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36819847

RESUMO

Electric fields have been used to control and direct chemical reactions in biochemistry and enzymatic catalysis, yet directly applying external electric fields to activate reactions in bulk solution and to characterize them ex situ remains a challenge. Here we utilize the scanning tunneling microscope-based break-junction technique to investigate the electric field driven homolytic cleavage of the radical initiator 4-(methylthio)benzoic peroxyanhydride at ambient temperatures in bulk solution, without the use of co-initiators or photochemical activators. Through time-dependent ex situ quantification by high performance liquid chromatography using a UV-vis detector, we find that the electric field catalyzes the reaction. Importantly, we demonstrate that the reaction rate in a field increases linearly with the solvent dielectric constant. Using density functional theory calculations, we show that the applied electric field decreases the dissociation energy of the O-O bond and stabilizes the product relative to the reactant due to their different dipole moments.

8.
Nature ; 613(7942): 71-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36600065

RESUMO

The two natural allotropes of carbon, diamond and graphite, are extended networks of sp3-hybridized and sp2-hybridized atoms, respectively1. By mixing different hybridizations and geometries of carbon, one could conceptually construct countless synthetic allotropes. Here we introduce graphullerene, a two-dimensional crystalline polymer of C60 that bridges the gulf between molecular and extended carbon materials. Its constituent fullerene subunits arrange hexagonally in a covalently interconnected molecular sheet. We report charge-neutral, purely carbon-based macroscopic crystals that are large enough to be mechanically exfoliated to produce molecularly thin flakes with clean interfaces-a critical requirement for the creation of heterostructures and optoelectronic devices2. The synthesis entails growing single crystals of layered polymeric (Mg4C60)∞ by chemical vapour transport and subsequently removing the magnesium with dilute acid. We explore the thermal conductivity of this material and find it to be much higher than that of molecular C60, which is a consequence of the in-plane covalent bonding. Furthermore, imaging few-layer graphullerene flakes using transmission electron microscopy and near-field nano-photoluminescence spectroscopy reveals the existence of moiré-like superlattices3. More broadly, the synthesis of extended carbon structures by polymerization of molecular precursors charts a clear path to the systematic design of materials for the construction of two-dimensional heterostructures with tunable optoelectronic properties.

9.
Chem Sci ; 13(36): 10798-10805, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36320717

RESUMO

The electric fields created at solid-liquid interfaces are important in heterogeneous catalysis. Here we describe the Ullmann coupling of aryl iodides on rough gold surfaces, which we monitor in situ using the scanning tunneling microscope-based break junction (STM-BJ) and ex situ using mass spectrometry and fluorescence spectroscopy. We find that this Ullmann coupling reaction occurs only on rough gold surfaces in polar solvents, the latter of which implicates interfacial electric fields. These experimental observations are supported by density functional theory calculations that elucidate the roles of surface roughness and local electric fields on the reaction. More broadly, this touchstone study offers a facile method to access and probe in real time an increasingly prominent yet incompletely understood mode of catalysis.

10.
Chem Commun (Camb) ; 58(90): 12556-12559, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36245392

RESUMO

The formation of carbon-carbon bonds with transition metal reagents serves as a cornerstone of organic synthesis. Here, we show that the reactivity of an otherwise kinetically inert transition metal complex can be induced by an external electric field to affect a coupling reaction. These results highlight the importance of electric field effects in reaction chemistry and offers a new strategy to modulate organometallic reactivity.

11.
J Am Chem Soc ; 144(41): 18772-18777, 2022 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-36194196

RESUMO

We report a reliable way to manipulate the dynamic, axial chirality in perylene diimide (PDI)-based twistacenes. Specifically, we reveal how chiral substituents on the imide position induce the helicity in a series of PDI-based twistacenes. We demonstrate that this remote chirality is able to control the helicity of flexible [4]helicene subunits by UV-vis, CD spectroscopy, X-ray crystallography, and TDDFT calculations. Furthermore, we have discovered that both the chiral substituent and the solvent each has a strong impact on the sign and intensity of the CD signals, highlighting the control of the dynamic helicity in this flexible system. DFT calculations suggest that the steric interaction of the chiral substituents is the important factor in how well a particular group is at inducing a preferred helicity.


Assuntos
Perileno , Perileno/química , Estereoisomerismo , Imidas/química , Solventes
12.
J Am Chem Soc ; 144(44): 20214-20220, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36306248

RESUMO

Here we show the access to single-handed helicene nanoribbons by utilizing a [6]helicene building block to induce diastereoselective, photochemical formation of [5]helicene units. Specifically, we have synthesized nanoribbons P1 and P2 with different ratios of [6]helicene "sergeants" to [5]helicene "soldiers", which on average consist of between ∼50 and 60 ortho-annulated benzene rings. These are the longest, optically active helicene backbones that have been prepared to date. The chiroptic properties of P1 and P2 reveal the transfer of stereochemical information from "sergeants" to "soldiers". To gain further insight into the stereo-information relay, we apply the same molecular design to discrete, model oligomers 1-5 and confirm that they also preferentially adopt homochiral geometries.


Assuntos
Nanotubos de Carbono , Compostos Policíclicos , Estereoisomerismo , Processos Fotoquímicos , Compostos Policíclicos/química
13.
Chem Commun (Camb) ; 58(90): 12616, 2022 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-36285661

RESUMO

Correction for 'Electric-field-induced coupling of aryl iodides with a nickel(0) complex' by Nicholas M. Orchanian et al., Chem. Commun., 2022, https://doi.org/10.1039/d2cc03671a.

14.
J Am Chem Soc ; 144(37): 16773-16777, 2022 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-36084324

RESUMO

Direct conversion of solar energy to mechanical work promises higher efficiency than multistep processes, adding a key tool to the arsenal of energy solutions necessary for our global future. The ideal photomechanical material would convert sunlight into mechanical motion rapidly, without attrition, and proportionally to the stimulus. We describe crystals of a tetrahedral isocyanoazobenzene-copper complex that roll continuously when irradiated with broad spectrum white light, including sunlight. The rolling results from bending and straightening of the crystal due to blue light-driven isomerization of a highly twisted azobenzene ligand. These findings introduce geometrically constrained crystal packing as a strategy for manipulating the electronic properties of chromophores. Furthermore, the continuous, solar-driven motion of the crystals demonstrates direct conversion of solar energy to continuous physical motion using easily accessed molecular systems.


Assuntos
Energia Solar , Luz Solar , Compostos Azo , Cobre , Ligantes
15.
J Am Chem Soc ; 144(30): 13973-13980, 2022 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-35878396

RESUMO

We report here an iterative synthesis of long helical perylene diimide (hPDI[n]) nanoribbons with a length up to 16 fused benzene rings. These contorted, ladder-type conjugated, and atomically precise nanoribbons show great potential as organic fast-charging and long-lifetime battery cathodes. By tuning the length of the hPDI[n] oligomers, we can simultaneously modulate the electrical conductivity and ionic diffusivity of the material. The length of the ladders adjusts both the conjugation for electron transport and the contortion for lithium-ion transport. The longest oligomer, hPDI[6], when fabricated as the cathode in lithium batteries, features both high electrical conductivity and high ionic diffusivity. This electrode material exhibits a high power density and can be charged in less than 1 min to 66% of its maximum capacity. Remarkably, this material also has exceptional cycling stability and can operate for up to 10,000 charging-discharging cycles without any appreciable capacity decay. The design principles described here chart a clear path for organic battery electrodes that are sustainable, fast-charging, and long lasting.

16.
Nat Chem ; 14(9): 1061-1067, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35798950

RESUMO

Single-molecule topological insulators are promising candidates as conducting wires over nanometre length scales. A key advantage is their ability to exhibit quasi-metallic transport, in contrast to conjugated molecular wires which typically exhibit a low conductance that decays as the wire length increases. Here, we study a family of oligophenylene-bridged bis(triarylamines) with tunable and stable mono- or di-radicaloid character. These wires can undergo one- and two-electron chemical oxidations to the corresponding mono-cation and di-cation, respectively. We show that the oxidized wires exhibit reversed conductance decay with increasing length, consistent with the expectation for Su-Schrieffer-Heeger-type one-dimensional topological insulators. The 2.6-nm-long di-cation reported here displays a conductance greater than 0.1G0, where G0 is the conductance quantum, a factor of 5,400 greater than the neutral form. The observed conductance-length relationship is similar between the mono-cation and di-cation series. Density functional theory calculations elucidate how the frontier orbitals and delocalization of radicals facilitate the observed non-classical quasi-metallic behaviour.

17.
J Am Chem Soc ; 144(12): 5263-5267, 2022 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-35302759

RESUMO

The amplification of chiral absorbance and emission is a primary figure of merit for the design of chiral chromophores. However, for dyes to be practically relevant in chiroptical applications, they must also absorb and/or emit chiral light over broad wavelength ranges. We investigate the interplay between molecular symmetry and broad-band chiral absorbance in a series of [6]helicenes. We find that an asymmetric [6]helicene containing two distinct chromophores absorbs chiral light across a much wider wavelength range than the symmetric [6]helicenes investigated here. Chemically reducing the helicenes shifts the absorption edge of the ECD spectra into the near-infrared wavelength range while preserving broad chiral absorption, producing a [6]helicene that absorbs a single handedness of light across the entire visible wavelength range.


Assuntos
Corantes , Luz , Corantes/química
18.
J Am Chem Soc ; 144(3): 1119-1124, 2022 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-35020382

RESUMO

The area of two-dimensional (2D) materials research would benefit greatly from the development of synthetically tunable van der Waals (vdW) materials. While the bottom-up synthesis of 2D frameworks from nanoscale building blocks holds great promise in this quest, there are many remaining hurdles, including the design of building blocks that reliably produce 2D lattices and the growth of macroscopic crystals that can be exfoliated to produce 2D materials. Here we report the regioselective synthesis of the cluster [trans-Co6Se8(CN)4(CO)2]3-/4-, a "superatomic" building block designed to polymerize and assemble into a 2D cyanometalate lattice whose surfaces are chemically addressable. The resulting vdW material, [Co(py)4]2[trans-Co6Se8(CN)4(CO)2], grows as bulk single crystals that can be mechanically exfoliated to produce flakes as thin as bilayers, with photolabile CO ligands on the exfoliated surface. As a proof of concept, we show that these surface CO ligands can be replaced by 4-isocyanoazobenzene under blue light irradiation. This work demonstrates that the bottom-up assembly of layered vdW materials from superatoms is a promising and versatile approach to create 2D materials with tunable physical and chemical properties.

19.
J Am Chem Soc ; 144(1): 74-79, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34978439

RESUMO

Coating two-dimensional (2D) materials with molecules bearing tunable properties imparts their surfaces with functionalities for applications in sensing, nanoelectronics, nanofabrication, and electrochemistry. Here, we report a method for the site-selective surface functionalization of 2D superatomic Re6Se8Cl2 monolayers. First, we activate bulk layered Re6Se8Cl2 by intercalating lithium and then exfoliate the intercalation compound Li2Re6Se8Cl2 in N-methylformamide (NMF). Heating the resulting solution eliminates LiCl to produce monolayer Re6Se8(NMF)2-x (x ≈ 0.4) as high-quality nanosheets. The unpaired electrons on each cluster in Re6Se8(NMF)2-x enable covalent surface functionalization through radical-based chemistry. We demonstrate this to produce four previously unknown surface-functionalized 2D superatomic materials: Re6Se8I2, Re6Se8(SPh)2, Re6Se8(SPhNH2)2, and Re6Se8(SC16H33)2. Transmission electron microscopy, chemical analysis, and vibrational spectroscopy reveal that the in-plane structure of the 2D Re6Se8 material is preserved through surface functionalization. We find that the incoming groups control the density of vacancy defects and the solubility of the 2D material. This approach will find utility in installing a broad array of chemical functionalities on the surface of 2D superatomic materials as a means to systematically tune their physical properties, chemical reactivity, and solution processability.

20.
J Am Chem Soc ; 144(1): 306-313, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34937334

RESUMO

We show that reaction pathways from a single superatom motif can be controlled through subtle electronic modification of the outer ligand spheres. Chevrel-type [Co6Se8L6] (L = PR3, CO) superatoms are used to form carbene-terminated clusters, the reactivity of which can be influenced through the electronic effects of the surrounding ligands. This carbene provides new routes for ligand substitution chemistry, which is used to selectively install cyanide or pyridine ligands which were previously inaccessible in these cobalt-based clusters. The surrounding ligands also impact the ability of this carbene to create larger fused clusters of the type [Co12Se16L10], providing underlying information for cluster fusion mechanisms. We use this information to develop methods of creating dimeric clusters with functionalized surface ligands with site specificity, putting new ligands in specific positions on this anisotropic core. Finally, adjusting the carbene intermediates can also be used to perturb the geometry of the [Co6Se8] core itself, as we demonstrate with a multicarbene adduct that displays a substantially anisotropic core. These additional levels of synthetic control could prove instrumental for using superatomic clusters for many applications including catalysis, electronic devices, and creating novel extended structures.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA