Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 13(24): 28583-28592, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34110139

RESUMO

Bundling of single-walled carbon nanotubes (SWCNTs) significantly undermines their superior thermal and electrical properties. Realizing stable, homogeneous, and surfactant-free dispersion of SWCNTs in solvents and composites has long been regarded as a key challenge. Here, we report amine-containing aromatic and cyclohexane molecules, which are common chain extenders (CEs) for epoxy curing in industry, can be used to effectively disperse CNTs. We achieve single-tube-level dispersion of SWCNTs in CE solvents, as demonstrated by the strong chirality-dependent absorption and photoluminescence emission. The SWCNT-CE dispersion remains stable under ambient conditions for months. The excellent dispersibility and stability are attributed to the formation of an n-type charge-transfer complex through the NH-π interaction between the amine group of CEs and the delocalized π bond of SWCNTs, which is confirmed by the negative Seebeck coefficient of the CE-functionalized SWCNT films, the red shift of the G band in the Raman spectra, and the NH-π peak in X-ray photoelectron spectroscopy. The high dispersibility of CEs significantly improves the electrical and thermal transport of macroscale CNT assemblies. The sheet resistance of the CE-dispersed SWCNT thin films reaches 161 Ω sq-1 at 80.8% optical transmittance after functional modification by HNO3. Moreover, the CEs cross-link CNTs and epoxy molecules, forming a pathway for phonon transport in CNT/epoxy nanocomposites. The thermal conductivity of the CE-CNT-epoxy composite is enhanced by 1850% compared with the original epoxy, which is the highest enhancement reported to date for CNT/epoxy nanocomposites. The CE-based NH-π interaction provides a new paradigm for the effective and stable dispersion of SWCNTs in a facile and scalable process.

2.
Nature ; 572(7771): 595-602, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31462796

RESUMO

Electronics is approaching a major paradigm shift because silicon transistor scaling no longer yields historical energy-efficiency benefits, spurring research towards beyond-silicon nanotechnologies. In particular, carbon nanotube field-effect transistor (CNFET)-based digital circuits promise substantial energy-efficiency benefits, but the inability to perfectly control intrinsic nanoscale defects and variability in carbon nanotubes has precluded the realization of very-large-scale integrated systems. Here we overcome these challenges to demonstrate a beyond-silicon microprocessor built entirely from CNFETs. This 16-bit microprocessor is based on the RISC-V instruction set, runs standard 32-bit instructions on 16-bit data and addresses, comprises more than 14,000 complementary metal-oxide-semiconductor CNFETs and is designed and fabricated using industry-standard design flows and processes. We propose a manufacturing methodology for carbon nanotubes, a set of combined processing and design techniques for overcoming nanoscale imperfections at macroscopic scales across full wafer substrates. This work experimentally validates a promising path towards practical beyond-silicon electronic systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA