Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
2.
Nature ; 572(7768): 254-259, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31316209

RESUMO

Patients with acute myeloid leukaemia (AML) often achieve remission after therapy, but subsequently die of relapse1 that is driven by chemotherapy-resistant leukaemic stem cells (LSCs)2,3. LSCs are defined by their capacity to initiate leukaemia in immunocompromised mice4. However, this precludes analyses of their interaction with lymphocytes as components of anti-tumour immunity5, which LSCs must escape to induce cancer. Here we demonstrate that stemness and immune evasion are closely intertwined in AML. Using xenografts of human AML as well as syngeneic mouse models of leukaemia, we show that ligands of the danger detector NKG2D-a critical mediator of anti-tumour immunity by cytotoxic lymphocytes, such as NK cells6-9-are generally expressed on bulk AML cells but not on LSCs. AML cells with LSC properties can be isolated by their lack of expression of NKG2D ligands (NKG2DLs) in both CD34-expressing and non-CD34-expressing cases of AML. AML cells that express NKG2DLs are cleared by NK cells, whereas NKG2DL-negative leukaemic cells isolated from the same individual escape cell killing by NK cells. These NKG2DL-negative AML cells show an immature morphology, display molecular and functional stemness characteristics, and can initiate serially re-transplantable leukaemia and survive chemotherapy in patient-derived xenotransplant models. Mechanistically, poly-ADP-ribose polymerase 1 (PARP1) represses expression of NKG2DLs. Genetic or pharmacologic inhibition of PARP1 induces NKG2DLs on the LSC surface but not on healthy or pre-leukaemic cells. Treatment with PARP1 inhibitors, followed by transfer of polyclonal NK cells, suppresses leukaemogenesis in patient-derived xenotransplant models. In summary, our data link the LSC concept to immune escape and provide a strong rationale for targeting therapy-resistant LSCs by PARP1 inhibition, which renders them amenable to control by NK cells in vivo.


Assuntos
Evasão da Resposta Imune , Leucemia Mieloide Aguda/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Células-Tronco Neoplásicas/imunologia , Células-Tronco Neoplásicas/patologia , Evasão Tumoral , Animais , Antígenos CD34/metabolismo , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Humanos , Células Matadoras Naturais/imunologia , Leucemia Mieloide Aguda/imunologia , Ligantes , Masculino , Camundongos , Células-Tronco Neoplásicas/metabolismo , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/metabolismo , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
3.
Int J Cancer ; 136(5): 1073-84, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25046567

RESUMO

Recruitment of Fc-receptor-bearing effector cells, such as natural killer (NK) cells, is a feature critical for the therapeutic success of antitumor antibodies and can be improved by the modifications of an antibody's Fc part. The various ligands of the activating immunoreceptor NKG2D, NKG2DL) are selectively expressed on malignant cells including leukemia. We here took advantage of the tumor-associated expression of NKG2DL for targeting leukemic cells by NKG2D-immunoglobulin G (IgG)1 fusion proteins containing modified Fc parts. Compared to NKG2D-Fc containing a wild-type Fc part (NKG2D-Fc-WT), our mutants (S239D/I332E and E233P/L234V/L235A/ΔG236/A327G/A330S) displayed highly enhanced (NKG2D-Fc-ADCC) and abrogated (NKG2D-Fc-KO) affinity to the NK cell Fc receptor, respectively. Functional analyses with allogenic as well as autologous NK cells and primary malignant cells of leukemia patients revealed that NKG2D-Fc-KO significantly reduced NK reactivity by blocking immunostimulatory NKG2D-NKG2DL interaction. NKG2D-Fc-WT already enhanced antileukemia reactivity by inducing antibody-dependent cellular cytotoxicity (ADCC) with NKG2D-Fc-ADCC mediating significantly stronger effects. Parallel application of NKG2D-Fc-ADCC with Rituximab caused additive effects in lymphoid leukemia. In line with the tumor-associated expression of NKG2DL, no NK cell ADCC against resting healthy blood cells was induced. Thus, NKG2D-Fc-ADCC potently enhances NK antileukemia reactivity despite the inevitable reduction of activating signals upon binding to NKG2DL and may constitute an attractive means for immunotherapy of leukemia.


Assuntos
Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Células Matadoras Naturais/imunologia , Leucemia/imunologia , Leucemia/patologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Proteínas Recombinantes de Fusão/imunologia , Citotoxicidade Celular Dependente de Anticorpos , Citotoxicidade Imunológica/imunologia , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoglobulina G/genética , Imunoterapia , Células Matadoras Naturais/patologia , Leucemia/genética , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Proteínas Recombinantes de Fusão/genética
4.
J Immunol ; 193(8): 4261-72, 2014 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-25217158

RESUMO

The ability of NK cells to mediate Ab-dependent cellular cytotoxicity (ADCC) largely contributes to the clinical success of antitumor Abs, including trastuzumab, which is approved for the treatment of breast cancer with HER2/neu overexpression. Notably, only ∼25% of breast cancer patients overexpress HER2/neu. Moreover, HER2/neu is expressed on healthy cells, and trastuzumab application is associated with side effects. In contrast, the ligands of the activating immunoreceptor NKG2D (NKG2DL) are selectively expressed on malignant cells. In this study, we took advantage of the tumor-associated expression of NKG2DL by using them as target Ags for NKG2D-IgG1 fusion proteins optimized by amino acid exchange S239D/I332E in their Fc part. Compared to constructs with wild-type Fc parts, fusion proteins carrying the S239D/I332E modification (NKG2D-Fc-ADCC) mediated highly enhanced degranulation, ADCC, and IFN-γ production of NK cells in response to breast cancer cells. NKG2D-Fc-ADCC substantially enhanced NK reactivity also against HER2/neu-low targets that were unaffected by trastuzumab, as both compounds mediated their immunostimulatory effects in strict dependence of target Ag expression levels. Thus, in line with the hierarchically organized potential of the various activating receptors governing NK reactivity and due to its highly increased affinity to CD16, NKG2D-Fc-ADCC potently enhances NK cell reactivity despite the inevitable reduction of activating signals upon binding to NKG2DL. Due to the tumor-restricted expression of NKG2DL, NKG2D-Fc-ADCC may constitute an attractive means for immunotherapy especially of HER2/neu-low or -negative breast cancer.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos/imunologia , Neoplasias da Mama/imunologia , Fragmentos Fc das Imunoglobulinas/imunologia , Células Matadoras Naturais/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Citotoxicidade Imunológica/imunologia , Feminino , Humanos , Fragmentos Fc das Imunoglobulinas/genética , Imunoterapia/métodos , Interferon gama/imunologia , Subfamília K de Receptores Semelhantes a Lectina de Células NK/genética , Receptor ErbB-2/biossíntese , Receptores de IgG/genética , Receptores de IgG/imunologia , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/imunologia , Trastuzumab
5.
Mol Ther ; 21(4): 877-86, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23380816

RESUMO

Natural killer (NK) cells are cytotoxic lymphocytes that largely contribute to the efficacy of therapeutic strategies like allogenic stem cell transplantation in acute myeloid leukemia (AML) and application of Rituximab in chronic lymphocytic leukemia (CLL). The tumor necrosis factor (TNF) family member GITR ligand (GITRL) is frequently expressed on leukemia cells in AML and CLL and impairs the reactivity of NK cells which express GITR and upregulate its expression following activation. We developed a strategy to reinforce NK anti-leukemia reactivity by combining disruption of GITR-GITRL interaction with targeting leukemia cells for NK antibody-dependent cellular cytotoxicity (ADCC) using GITR-Ig fusion proteins with modified Fc moieties. Neutralization of leukemia-expressed GITRL by the GITR domain enhanced cytotoxicity and cytokine production of NK cells depending on activation state with NK reactivity being further largely dependent on the engineered affinity of the fusion proteins to the Fc receptor. Compared with wild-type GITR-Ig, treatment of primary AML and CLL cells with mutants containing a S239D/I332E modification potently increased cytotoxicity, degranulation, and cytokine production of NK cells in a target-antigen-dependent manner with additive effects being observed with CLL cells upon parallel exposure to Rituximab. Fc-optimized GITR-Ig may thus constitute an attractive means for immunotherapy of leukemia that warrants clinical evaluation.


Assuntos
Células Matadoras Naturais/citologia , Leucemia/terapia , Proteínas Recombinantes de Fusão/farmacologia , Células Cultivadas , Citometria de Fluxo , Proteína Relacionada a TNFR Induzida por Glucocorticoide/genética , Proteína Relacionada a TNFR Induzida por Glucocorticoide/metabolismo , Humanos , Células Matadoras Naturais/efeitos dos fármacos , Leucemia/imunologia , Receptores Fc/genética , Receptores Fc/metabolismo , Proteínas Recombinantes de Fusão/genética
6.
J Immunol ; 190(2): 821-31, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23241893

RESUMO

The TNF family member receptor activator for NF-κB ligand (RANKL) and its receptors RANK and osteoprotegerin are key regulators of bone remodeling but also influence cellular functions of tumor and immune effector cells. In this work, we studied the involvement of RANK-RANKL interaction in NK cell-mediated immunosurveillance of acute myeloid leukemia (AML). Substantial levels of RANKL were found to be expressed on leukemia cells in 53 of 78 (68%) investigated patients. Signaling via RANKL into the leukemia cells stimulated their metabolic activity and induced the release of cytokines involved in AML pathophysiology. In addition, the immunomodulatory factors released by AML cells upon RANKL signaling impaired the anti-leukemia reactivity of NK cells and induced RANK expression, and NK cells of AML patients displayed significantly upregulated RANK expression compared with healthy controls. Treatment of AML cells with the clinically available RANKL Ab Denosumab resulted in enhanced NK cell anti-leukemia reactivity. This was due to both blockade of the release of NK-inhibitory factors by AML cells and prevention of RANK signaling into NK cells. The latter was found to directly impair NK anti-leukemia reactivity with a more pronounced effect on IFN-γ production compared with cytotoxicity. Together, our data unravel a previously unknown function of the RANK-RANKL molecule system in AML pathophysiology as well as NK cell function and suggest that neutralization of RANKL with therapeutic Abs may serve to reinforce NK cell reactivity in leukemia patients.


Assuntos
Células Matadoras Naturais/imunologia , Células Matadoras Naturais/metabolismo , Leucemia Mieloide Aguda/imunologia , Leucemia Mieloide Aguda/metabolismo , Ligante RANK/metabolismo , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Anticorpos Monoclonais Humanizados/farmacologia , Linhagem Celular , Denosumab , Feminino , Regulação Leucêmica da Expressão Gênica , Humanos , Imunomodulação/efeitos dos fármacos , Leucemia Mieloide Aguda/genética , Masculino , Pessoa de Meia-Idade , Ligação Proteica , Ligante RANK/antagonistas & inibidores , Ligante RANK/genética , Receptor Ativador de Fator Nuclear kappa-B/genética , Receptor Ativador de Fator Nuclear kappa-B/metabolismo , Transdução de Sinais/efeitos dos fármacos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA