Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2021): 20232926, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38628117

RESUMO

Seasonal migration is an underappreciated driver of animal diversification. Changes in migratory behaviour may favour the establishment of sedentary founder populations and promote speciation if there is sufficient reproductive isolation between sedentary and migratory populations. From a systematic literature review, we here quantify the role of migratory drop-off-the loss of migratory behaviour-in promoting speciation in birds on islands. We identify at least 157 independent colonization events likely initiated by migratory species that led to speciation, including 44 cases among recently extinct species. By comparing, for all islands, the proportion of island endemic species that derived from migratory drop-off with the proportion of migratory species among potential colonizers, we showed that seasonal migration has a larger effect on island endemic richness than direct dispersal. We also found that the role of migration in island colonization increases with the geographic isolation of islands. Furthermore, the success of speciation events depends in part on species biogeographic and ecological factors, here positively associated with greater range size and larger flock sizes. These results highlight the importance of shifts in migratory behaviour in the speciation process and calls for greater consideration of migratory drop-off in the biogeographic distribution of birds.


Assuntos
Aves , Animais , Filogenia
3.
J Environ Manage ; 352: 120108, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38244406

RESUMO

The increasing popularity of digital media among protected area visitors poses challenges to protected area management. It alters the way visitors move and behave in the area, potentially increasing disturbance of nature, and it might also affect their expectation prior to the visit and their reflection on it. Simultaneously, digital media allow protected area managers to develop and implement new methods of digital visitor management (DVM). This may help to avoid conflicts and ensure compliance with rules and regulations and may have much further reaching positive consequences. Based on an online survey across 131 parks in 46 countries covering all continents, this study examined for the first time how protected areas view DVM. The results showed that the majority of park managers see digitalization as an opportunity, with 91% agreeing that it enables them to reach larger numbers of visitors and to provide real-time information. The advantage of integrating digital media into visitor monitoring was recognized. However, some park managers perceived digitalization as problematic, with 42% agreeing that it increases visitor load in sensitive areas and 40% agreeing that it leads to more off-trail activity. A clear majority of the respondents (61-91%) saw the proposed methods of DVM as effective or very effective. Accordingly, 70% of them envisioned using DVM in the future. Our findings suggest that the effects of digitalization in outdoor recreation are largely similar across the globe, with no significant influence of economic status or region. They offer insights into the potential of DVM for protected area management, but also its main obstacles. Adoption will be facilitated by increasing staff and funding for DVM. Additionally, knowledge exchange between protected areas can ease the successful implementation of new digital tools.


Assuntos
Conservação dos Recursos Naturais , Recreação , Humanos , Conservação dos Recursos Naturais/métodos , Internet , Conhecimento , Inquéritos e Questionários
4.
Nat Ecol Evol ; 8(3): 511-518, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38225430

RESUMO

The increasing similarity of plant species composition among distinct areas is leading to the homogenization of ecosystems globally. Human actions such as ecosystem modification, the introduction of non-native plant species and the extinction or extirpation of endemic and native plant species are considered the main drivers of this trend. However, little is known about when floristic homogenization began or about pre-human patterns of floristic similarity. Here we investigate vegetation trends during the past 5,000 years across the tropical, sub-tropical and warm temperate South Pacific using fossil pollen records from 15 sites on 13 islands within the biogeographical realm of Oceania. The site comparisons show that floristic homogenization has increased over the past 5,000 years. Pairwise Bray-Curtis similarity results also show that when two islands were settled by people in a given time interval, their floristic similarity is greater than when one or neither of the islands were settled. Importantly, higher elevation sites, which are less likely to have experienced human impacts, tended to show less floristic homogenization. While biotic homogenization is often referred to as a contemporary issue, we have identified a much earlier trend, likely driven by human colonization of the islands and subsequent impacts.


Assuntos
Biodiversidade , Ecossistema , Humanos , Ilhas do Pacífico , Plantas , Pólen
5.
Nat Commun ; 14(1): 8116, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114469

RESUMO

Birds are among the best-studied animal groups, but their prehistoric diversity is poorly known due to low fossilization potential. Hence, while many human-driven bird extinctions (i.e., extinctions caused directly by human activities such as hunting, as well as indirectly through human-associated impacts such as land use change, fire, and the introduction of invasive species) have been recorded, the true number is likely much larger. Here, by combining recorded extinctions with model estimates based on the completeness of the fossil record, we suggest that at least ~1300-1500 bird species (~12% of the total) have gone extinct since the Late Pleistocene, with 55% of these extinctions undiscovered (not yet discovered or left no trace). We estimate that the Pacific accounts for 61% of total bird extinctions. Bird extinction rate varied through time with an intense episode ~1300 CE, which likely represents the largest human-driven vertebrate extinction wave ever, and a rate 80 (60-95) times the background extinction rate. Thus, humans have already driven more than one in nine bird species to extinction, with likely severe, and potentially irreversible, ecological and evolutionary consequences.


Assuntos
Aves , Extinção Biológica , Animais , Espécies Introduzidas , Efeitos Antropogênicos
6.
Nat Commun ; 14(1): 7890, 2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38036522

RESUMO

A prominent hypothesis in ecology is that larger species ranges are found in more variable climates because species develop broader environmental tolerances, predicting a positive range size-temperature variability relationship. However, this overlooks the extreme temperatures that variable climates impose on species, with upper or lower thermal limits more likely to be exceeded. Accordingly, we propose the 'temperature range squeeze' hypothesis, predicting a negative range size-temperature variability relationship. We test these contrasting predictions by relating 88,000 elevation range sizes of vascular plants in 44 mountains to short- and long-term temperature variation. Consistent with our hypothesis, we find that species' range size is negatively correlated with diurnal temperature range. Accurate predictions of short-term temperature variation will become increasingly important for extinction risk assessment in the future.


Assuntos
Clima , Ecossistema , Temperatura , Temperatura Alta , Mudança Climática
7.
Ecol Lett ; 26(5): 729-741, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36958810

RESUMO

Human-mediated changes in island vegetation are, among others, largely caused by the introduction and establishment of non-native species. However, data on past changes in non-native plant species abundance that predate historical documentation and censuses are scarce. Islands are among the few places where we can track human arrival in natural systems allowing us to reveal changes in vegetation dynamics with the arrival of non-native species. We matched fossil pollen data with botanical status information (native, non-native), and quantified the timing, trajectories and magnitude of non-native plant vegetational change on 29 islands over the past 5000 years. We recorded a proportional increase in pollen of non-native plant taxa within the last 1000 years. Individual island trajectories are context-dependent and linked to island settlement histories. Our data show that non-native plant introductions have a longer and more dynamic history than is generally recognized, with critical implications for biodiversity baselines and invasion biology.


Assuntos
Biodiversidade , Plantas , Humanos , Pólen , Ilhas , Espécies Introduzidas
8.
Ecol Lett ; 26(4): 504-515, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36740842

RESUMO

Current models of island biogeography treat endemic and non-endemic species as if they were functionally equivalent, focussing primarily on species richness. Thus, the functional composition of island biotas in relation to island biogeographical variables remains largely unknown. Using plant trait data (plant height, leaf area and flower length) for 895 native species in the Canary Islands, we related functional trait distinctiveness and climate rarity for endemic and non-endemic species and island ages. Endemics showed a link to climatically rare conditions that is consistent with island geological change through time. However, functional trait distinctiveness did not differ between endemics and non-endemics and remained constant with island age. Thus, there is no obvious link between trait distinctiveness and occupancy of rare climates, at least for the traits measured here, suggesting that treating endemic and non-endemic species as functionally equivalent in island biogeography is not fundamentally wrong.


Assuntos
Clima , Plantas , Fenótipo , Folhas de Planta , Espanha , Ilhas
9.
PLoS One ; 17(10): e0276432, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36301819

RESUMO

Ecosystem services such as food provisioning, climate regulation, nutrient cycling, or recreation in open landscapes underpin human wellbeing. They are highly dependent on land use, land cover and utilization pattern as well as environmental factors like climate, topography and soil. In consequence, ecosystem services supply shows a high spatial variability. However, it is less clear if the perception of the importance of ecosystem services is similarly heterogeneous in space and amongst societal actors. The aim of this large-scale study was to explore whether land cover and climate gradients as well as socio-cultural factors influence the perceptions of ecosystem services of four groups of societal actors: citizens, farmers, foresters and nature managers. Spatially explicit survey data of 3018 respondents allowed to gain insight into the distribution of perceived importance of 21 ecosystem services in the federal state of Bavaria, Germany together with the respondents' socio-cultural characterisation (e.g. gender, education and hobbies in nature). Responses were analysed through descriptive statistics, redundancy analysis, and Generalized Linear Models. Results reveal that the perceived importance of many ecosystem services was consistently high across groups, although perception differed for some ecosystem services (e.g. production of energy plants and timber as well as recreation in urban green space). Compared to other actor groups, farmers attributed slightly lower importance to all ES except provisioning services. Socio-cultural factors better explained variability in perceived importance of ecosystem services than land cover and climate gradients. This might be either explained by the fact that the environmental gradients vary not strong enough in our case study or that they do not shape the perceptions of respondents. A limitation of the study is that the sample of respondents obtained is not representative for the population, but biased towards persons interested in the topics of the survey. Still the consensus indicated by the overall positive perception of ecosystem services among respondents highlights the integrative potential of ecosystem services when included in decision-making.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Humanos , Conservação dos Recursos Naturais/métodos , Parques Recreativos , Solo , Fazendeiros
10.
Proc Natl Acad Sci U S A ; 119(37): e2208629119, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36067289

RESUMO

Insular woodiness (IW)-the evolutionary transition from herbaceousness toward woodiness on islands-is one of the most iconic features of island floras. Since pioneering work by Darwin and Wallace, a number of drivers of IW have been proposed, such as 1) competition for sunlight requiring plants with taller and stronger woody stems and 2) drought favoring woodiness to safeguard root-to-shoot water transport. Alternatively, IW may be the indirect result of increased lifespan related to 3) a favorable aseasonal climate and/or 4) a lack of large native herbivores. However, information on the occurrence of IW is fragmented, hampering tests of these potential drivers. Here, we identify 1,097 insular woody species on 375 islands and infer at least 175 evolutionary transitions on 31 archipelagos, concentrated in six angiosperm families. Structural equation models reveal that the insular woody species richness on oceanic islands correlates with a favorable aseasonal climate, followed by increased drought and island isolation (approximating competition). When continental islands are also included, reduced herbivory pressure by large native mammals, increased drought, and island isolation are most relevant. Our results illustrate different trajectories leading to rampant convergent evolution toward IW and further emphasize archipelagos as natural laboratories of evolution, where similar abiotic or biotic conditions replicated evolution of similar traits.


Assuntos
Ilhas , Madeira , Evolução Biológica , Clima , Oceanos e Mares , Plantas
11.
Sci Adv ; 7(46): eabj5790, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34757780

RESUMO

Human impacts reshape ecological communities through the extinction and introduction of species. The combined impact of these factors depends on whether non-native species fill the functional roles of extinct species, thus buffering the loss of functional diversity. This question has been difficult to address, because comprehensive information about past extinctions and their traits is generally lacking. We combine detailed information about extinct, extant, and established alien birds to quantify historical changes in functional diversity across nine oceanic archipelagos. We found that alien species often equal or exceed the number of anthropogenic extinctions yet apparently perform a narrower set of functional roles as current island assemblages have undergone a substantial and ubiquitous net loss in functional diversity and increased functional similarity among assemblages. Our results reveal that the introduction of alien species has not prevented anthropogenic extinctions from reducing and homogenizing the functional diversity of native bird assemblages on oceanic archipelagos.

12.
Proc Natl Acad Sci U S A ; 118(36)2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34475215

RESUMO

Biodiversity dynamics are shaped by a complex interplay between current conditions and historic legacy. The interaction of short- and long-term climate change may mask the true relationship of evolutionary responses to climate change if not specifically accounted for. These paleoclimate interactions have been demonstrated for extinction risk and biodiversity change, but their importance for origination dynamics remains untested. Here, we show that origination probability in marine fossil genera is strongly affected by paleoclimate interactions. Overall, origination probability increases by 27.8% [95% CI (27.4%, 28.3%)] when a short-term cooling adds to a long-term cooling trend. This large effect is consistent through time and all studied groups. The mechanisms of the detected effect might be manifold but are likely connected to increased allopatric speciation with eustatic sea level drop caused by sustained global cooling. We tested this potential mechanism through which paleoclimate interactions can act on origination rates by additionally examining a proxy for habitat fragmentation. This proxy, continental fragmentation, has a similar effect on origination rates as paleoclimate interactions, supporting the importance of allopatric speciation through habitat fragmentation in the deep-time fossil record. The identified complex nature of paleoclimate interactions might explain contradictory conclusions on the relationship between temperature and origination in the previous literature. Our results highlight the need to account for complex interactions in evolutionary studies both between and among biotic and abiotic factors.


Assuntos
Mudança Climática , Biologia Marinha , Animais , Biodiversidade , Evolução Biológica , Fósseis
13.
Science ; 372(6541): 488-491, 2021 04 30.
Artigo em Inglês | MEDLINE | ID: mdl-33926949

RESUMO

Islands are among the last regions on Earth settled and transformed by human activities, and they provide replicated model systems for analysis of how people affect ecological functions. By analyzing 27 representative fossil pollen sequences encompassing the past 5000 years from islands globally, we quantified the rates of vegetation compositional change before and after human arrival. After human arrival, rates of turnover accelerate by a median factor of 11, with faster rates on islands colonized in the past 1500 years than for those colonized earlier. This global anthropogenic acceleration in turnover suggests that islands are on trajectories of continuing change. Strategies for biodiversity conservation and ecosystem restoration must acknowledge the long duration of human impacts and the degree to which ecological changes today differ from prehuman dynamics.


Assuntos
Biodiversidade , Atividades Humanas , Ilhas , Humanos , Pólen
14.
Nat Ecol Evol ; 5(3): 304-310, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33462487

RESUMO

Assessing extinction risk from climate drivers is a major goal of conservation science. Few studies, however, include a long-term perspective of climate change. Without explicit integration, such long-term temperature trends and their interactions with short-term climate change may be so dominant that they blur or even reverse the apparent direct relationship between climate change and extinction. Here we evaluate how observed genus-level extinctions of arthropods, bivalves, cnidarians, echinoderms, foraminifera, gastropods, mammals and reptiles in the geological past can be predicted from the interaction of long-term temperature trends with short-term climate change. We compare synergistic palaeoclimate interaction (a short-term change on top of a long-term trend in the same direction) to antagonistic palaeoclimate interaction such as long-term cooling followed by short-term warming. Synergistic palaeoclimate interaction increases extinction risk by up to 40%. The memory of palaeoclimate interaction including the climate history experienced by ancestral lineages can be up to 60 Myr long. The effect size of palaeoclimate interaction is similar to other key factors such as geographic range, abundance or clade membership. Insights arising from this previously unknown driver of extinction risk might attenuate recent predictions of climate-change-induced biodiversity loss.


Assuntos
Mudança Climática , Extinção Biológica , Animais , Biodiversidade , Mamíferos , Répteis
15.
Ecol Evol ; 11(24): 17973-17999, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35003651

RESUMO

Tree hollows are among the rarest habitats in today's Central European managed forests but are considered key structures for high biodiversity in forests. To analyze and compare the effects of tree hollow characteristics and forest structure on diversity of saproxylic beetles in tree hollows in differently structured managed forests, we examined between 41 and 50 tree hollows in beech trees in each of three state forest management districts in Germany. During the two-year study, we collected 283 saproxylic beetle species (5880 individuals; 22% threatened species), using emergence traps. At small spatial scales, the size of hollow entrance and the number of surrounding microhabitat structures positively influenced beetle diversity, while the stage of wood mould decomposition had a negative influence, across all three forest districts. We utilized forest inventory data to analyze the effects of forest structure in radii of 50-500 m around tree hollows on saproxylic beetle diversity in the hollows. At these larger spatial scales, the three forest management districts differed remarkably regarding the parameters that influenced saproxylic beetle diversity in tree hollows. In Ebrach, characterized by mostly deciduous trees, the amount of dead wood positively influenced beetle diversity. In the mostly coniferous Fichtelberg forest district, with highly isolated tree hollows, in contrast, only the proportion of beech trees around the focal tree hollows showed a positive influence on beetle diversity. In Kelheim, characterized by mixed forest stands, there were no significant relationships between forest structure and beetle diversity in tree hollows. In this study, the same local tree hollow parameters influenced saproxylic beetle diversity in all three study regions, while parameters of forest structure at larger spatial scales differed in their importance, depending on tree-species composition.

16.
Nature ; 556(7700): 231-234, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29618821

RESUMO

Globally accelerating trends in societal development and human environmental impacts since the mid-twentieth century 1-7 are known as the Great Acceleration and have been discussed as a key indicator of the onset of the Anthropocene epoch 6 . While reports on ecological responses (for example, changes in species range or local extinctions) to the Great Acceleration are multiplying 8, 9 , it is unknown whether such biotic responses are undergoing a similar acceleration over time. This knowledge gap stems from the limited availability of time series data on biodiversity changes across large temporal and geographical extents. Here we use a dataset of repeated plant surveys from 302 mountain summits across Europe, spanning 145 years of observation, to assess the temporal trajectory of mountain biodiversity changes as a globally coherent imprint of the Anthropocene. We find a continent-wide acceleration in the rate of increase in plant species richness, with five times as much species enrichment between 2007 and 2016 as fifty years ago, between 1957 and 1966. This acceleration is strikingly synchronized with accelerated global warming and is not linked to alternative global change drivers. The accelerating increases in species richness on mountain summits across this broad spatial extent demonstrate that acceleration in climate-induced biotic change is occurring even in remote places on Earth, with potentially far-ranging consequences not only for biodiversity, but also for ecosystem functioning and services.


Assuntos
Altitude , Biodiversidade , Mapeamento Geográfico , Aquecimento Global/estatística & dados numéricos , Plantas/classificação , Europa (Continente) , História do Século XX , História do Século XXI , Temperatura
17.
Ecol Evol ; 8(23): 11663-11676, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30598765

RESUMO

Subtropical forest is recognized as an important global vegetation type with high levels of plant species richness. However, the mechanisms underlying its diversity remain poorly understood. Here, we assessed the roles of environmental drivers and evolutionary dynamics (time-for-speciation and diversification rate) in shaping species richness patterns across China for a major subtropical plant group, the tea family (Theaceae s.s.) (145 species), at several taxonomic scales. To this end, we assessed the relationships between species richness, key environmental variables (minimum temperature of the coldest month, mean annual precipitation, soil pH), and phylogenetic assemblage structure (net related index) by using non-spatial and spatial linear models. We found that species richness is significantly related to environmental variables, especially soil pH, which is negatively related to species richness both across the whole family and within the major tribe Theeae (116 species). Family-level species richness is unrelated to phylogenetic structure, whereas species richness in tribe Theeae was related to phylogenetic structure with U-shaped relationship, a more complex relation than predicted by the time-for-speciation or diversification rate hypotheses. Overall, these results suggest that both environmental and evolutionary factors play important roles in shaping species richness patterns within this subtropical plant family across China, with the latter mainly important at fine taxonomic scales. Most surprisingly, our findings show that soils can play a key role in shaping macro-scale diversity patterns, contrary to often-stated assumptions.

18.
AoB Plants ; 10(6): ply070, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30619543

RESUMO

Climatic seasonality drives ecosystem processes (e.g. productivity) and influences plant species distribution. However, it is poorly understood how different aspects of seasonality (especially regarding temperature and precipitation) affect growth continuity of trees in climates with low seasonality because seasonality is often only crudely measured. On islands, exceptionally wide elevational species distribution ranges allow the use of tree rings to identify how growth continuity and climate-growth relationships change with elevation. Here, we present a novel dendroecological method to measure stem growth continuity based on annual density fluctuations (ADFs) in tree rings of Pinus canariensis to indicate low climatic seasonality. The species ranges from 300 to >2000 m a.s.l. on the trade wind-influenced island of La Palma (Canary Islands), where we measured three decades of tree-ring data of 100 individuals distributed over 10 sites along the entire elevational range. The successfully implemented ADF approach revealed a major shift of stem growth continuity across the elevational gradient. In a remarkably clear pattern, stem growth continuity (percentage of ADFs) showed a hump-shaped relationship with elevation reaching a maximum at around 1000 m a.s.l. Low- to mid-elevation tree growth was positively correlated with the Palmer Drought Severity Index (PDSI; indicating aridity) and sea surface temperature (indicating trade wind-influenced moderation of water supply), while high-elevation tree growth was positively correlated with winter temperature (indicating a cold-induced dormancy period). We conclude that ADFs are a useful method to measure stem growth continuity in low-seasonality climates. Growth of P. canariensis on the Canary Islands is more frequently interrupted by winter cold at high elevations and by summer drought at low elevations than in the trade wind-influenced mid elevations, where growth sometimes continues throughout the year. Climate change-associated alterations in trade wind cloud formation might cause non-analogue growth limitations for many unique island species.

19.
Ecol Evol ; 7(2): 771-779, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28116071

RESUMO

Ecosystems that provide environmental opportunities but are poor in species and functional richness generally support speciation as well as invasion processes. These processes are expected not to be equally effective along elevational gradients due to specific ecological, spatial, and anthropogenic filters, thus controlling the dispersal and establishment of species. Here, we investigate speciation and invasion processes along elevational gradients. We assess the vascular plant species richness as well as the number and percentage of endemic species and non-native species systematically along three elevational gradients covering large parts of the climatic range of La Palma, Canary Islands. Species richness was negatively correlated with elevation, while the percentage of Canary endemic species showed a positive relationship. However, the percentage of Canary-Madeira endemics did not show a relationship with elevation. Non-native species richness (indicating invasion) peaked at 500 m elevation and showed a consistent decline until about 1,200 m elevation. Above that limit, no non-native species were present in the studied elevational gradients. Ecological, anthropogenic, and spatial filters control richness, diversification, and invasion with elevation. With increase in elevation, richness decreases due to species-area relationships. Ecological limitations of native ruderal species related to anthropogenic pressure are in line with the absence of non-native species from high elevations indicating directional ecological filtering. Increase in ecological isolation with elevation drives diversification and thus increased percentages of Canary endemics. The best preserved eastern transect, including mature laurel forests, is an exception. The high percentage of Canary-Madeira endemics indicates the cloud forest's environmental uniqueness-and thus ecological isolation-beyond the Macaronesian islands.

20.
Biol Rev Camb Philos Soc ; 92(2): 830-853, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-26923215

RESUMO

The general dynamic model of oceanic island biogeography (GDM) has added a new dimension to theoretical island biogeography in recognizing that geological processes are key drivers of the evolutionary processes of diversification and extinction within remote islands. It provides a dynamic and essentially non-equilibrium framework generating novel predictions for emergent diversity properties of oceanic islands and archipelagos. Its publication in 2008 coincided with, and spurred on, renewed attention to the dynamics of remote islands. We review progress, both in testing the GDM's predictions and in developing and enhancing ecological-evolutionary understanding of oceanic island systems through the lens of the GDM. In particular, we focus on four main themes: (i) macroecological tests using a space-for-time rationale; (ii) extensions of theory to islands following different patterns of ontogeny; (iii) the implications of GDM dynamics for lineage diversification and trait evolution; and (iv) the potential for downscaling GDM dynamics to local-scale ecological patterns and processes within islands. We also consider the implications of the GDM for understanding patterns of non-native species diversity. We demonstrate the vitality of the field of island biogeography by identifying a range of potentially productive lines for future research.


Assuntos
Biodiversidade , Ilhas , Modelos Biológicos , Ecologia , Fenômenos Geológicos , Oceanos e Mares , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA