Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
FASEB J ; 35(5): e21517, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33913581

RESUMO

Myocardial infarction (MI) activates the epicardium to form epicardial stromal cells (EpiSC) that reside in the epicardial hypoxic microenvironment. Paracrine factors secreted by EpiSC were shown to modulate the injury response of the post-MI heart and improve cardiac function. We have previously reported that the expression of the angiogenic cytokines vascular endothelial growth factor A (VEGFA) and IL-6 is strongly upregulated in EpiSC by adenosine acting via the A2B receptor (A2B R). Since tissue hypoxia is well known to be a potent stimulus for the generation of extracellular adenosine, the present study explored the crosstalk of A2B R activation and hypoxia-hypoxia-inducible factor 1 alpha (HIF-1α) signaling in cultured EpiSC, isolated from rat hearts 5 days after MI. We found substantial nuclear accumulation of HIF-1α after A2B R activation even in the absence of hypoxia. This normoxic HIF-1α induction was PKC-dependent and involved upregulation of HIF-1α mRNA expression. While the influence of hypoxia on adenosine generation and A2B R signaling was only minor, hypoxia and A2B R activation cumulatively increased VEGFA expression. Normoxic A2B R activation triggered an HIF-1α-associated cell-protective metabolic switch and reduced oxygen consumption. HIF-1α targets and negative regulators PHD2 and PHD3 were only weakly induced by A2B R signaling, which may result in a sustained HIF-1α activity. The A2B R-mediated normoxic HIF-1α induction was also observed in cardiac fibroblasts from healthy mouse hearts, suggesting that this mechanism is also functional in other A2B R-expressing cell types. Altogether, we identified A2B R-mediated HIF-1α induction as novel aspect in the HIF-1α-adenosine crosstalk, which modulates EpiSC activity and can amplify HIF-1α-mediated cardioprotection.


Assuntos
Cardiotônicos/metabolismo , Hipóxia Celular , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Infarto do Miocárdio/prevenção & controle , Pericárdio/metabolismo , Receptor A2B de Adenosina/metabolismo , Células Estromais/metabolismo , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Masculino , Infarto do Miocárdio/etiologia , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Pericárdio/patologia , Ratos , Ratos Wistar , Receptor A2B de Adenosina/genética , Células Estromais/patologia
2.
Antioxidants (Basel) ; 9(8)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717801

RESUMO

Stress-inducible heme oxygenase-1 (HO-1) catalyzes the oxidative cleavage of heme yielding biliverdin, ferrous iron, and carbon monoxide (CO). Heme oxygenase activity has been attributed to antioxidant defense via the redox cycling system of biliverdin and bilirubin. There is increasing evidence that CO is a gaseous signaling molecule and plays a role in the regulation of energy metabolism. Inhibitory effects of CO on the respiratory chain are well established, but the implication of such a process on the cellular stress response is not well understood. By means of extracellular flux analyses and isotopic tracing, we studied the effects of CO, either released from the CO donor CORM-401 or endogenously produced by heme oxygenases, on the respiratory chain and glucose metabolism. CORM-401 was thereby used as a tool to mimic endogenous CO production by heme oxygenases. In the long term (>60 min), CORM-401-derived CO exposure inhibited mitochondrial respiration, which was compensated by increased glycolysis accompanied by a loss of the ATP production rate and an increase in proton leakage. This effect pattern was likewise observed after endogenous CO production by heme oxygenases. However, in the present setting, these effects were only observed when sufficient substrate for heme oxygenases (hemin) was provided. Modulation of the HO-1 protein level was less important. The long-term influence of CO on glucose metabolism via glycolysis was preceded by a short-term response (<30 min) of the cells to CO. Stable isotope-labeling experiments and metabolic flux analysis revealed a short-term shift of glucose consumption from glycolysis to the pentose phosphate pathway (PPP) along with an increase in reactive oxygen species (ROS) generation. Overall, we suggest that signaling by endogenous CO stimulates the rapid formation of reduction equivalents (NADPH) via the PPP, and plays an additional role in antioxidant defense, e.g., via feed-forward stimulation of the bilirubin/biliverdin redox cycling system.

3.
Arch Biochem Biophys ; 687: 108383, 2020 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-32335048

RESUMO

Intracellular carbon monoxide (CO) is a gaseous signaling molecule and is generated enzymatically by heme oxygenases upon degradation of heme to billiverdin. Target structures for intracellular produced CO are heme proteins including cytochrome c oxidase of the respiratory chain, cytochrome P450-dependent monooxygenases, or myoglobin. For studies on CO signaling, CO-releasing molecules (CORMs) of different structure are available. Here, three frequently used CORMs (CORM-2, CORM-3 and CORM-401) were studied for their properties to provide CO in biological test systems and address susceptible heme proteins. CO release was investigated in the myoglobin binding assay and found to be rapid (<5 min) with CORM-2- and CORM-3, whereas CORM-401 continuously provided CO (>50 min). Storage stability of CORM stock solutions was also assessed with the myoglobin assay. Only CORM-401 stock solutions were stable over a period of 7 days. Incubation of CORMs with recombinant cytochrome P450 led to an inhibition of enzyme activity. However, only CORM-3 and CORM-401 proved to be suitable in this test system because controls with the inactivated CORM-2 (iCORM-2) also led to a loss of enzyme activity. The impact of CORMs on the respiratory chain was investigated with high resolution respirometry and extracellular flux technology. In the first approach interferences of CORM-2 and CORM-3 with oxygen measurement occurred, since a rapid depletion of oxygen was detected in the medium even when no cells were present. However, CORM-401 did not interfere with oxygen measurement and the expected inhibition of cellular respiration was observed. CORM-2 was not suitable for use in oxygen measurements with the extracellular flux technology and CORM-3 application did not show any effect in this system. However, CO-dependent inhibition of cellular respiration was observed with CORM-401. Based on the present experiments it is concluded, that CORM-401 produced most reliable CO-specific results for the modulation of typical CO targets. For studies on CO-dependent biological effects on intracellular heme groups, CORM-2 and CORM-3 were less suitable. Depending on the experimental setting, data achieved with these compounds should be evaluated with caution.


Assuntos
Monóxido de Carbono/metabolismo , Glicinas N-Substituídas/farmacologia , Compostos Organometálicos/farmacologia , Animais , Respiração Celular/efeitos dos fármacos , Citocromo P-450 CYP1A1/antagonistas & inibidores , Estabilidade de Medicamentos , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Humanos , Camundongos , Glicinas N-Substituídas/química , Compostos Organometálicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA