Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microbiol Spectr ; : e0118524, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162539

RESUMO

Streptococcus pyogenes or Group A Streptococcus (GAS) remains a significant infectious problem around the world, particularly in low- and middle-income settings. Moreover, a recent invasive GAS infection (iGAS) upsurge has been observed in high-income settings. However, to date, no vaccine is available. Finding a good vaccine antigen and understanding the role of virulence factors in GAS infections have been hampered, in part, by technical difficulties to transform the many different strains and generate knockout mutants. Using colE1-type plasmid as a suicide vector, we have set up a method allowing the generation of non-polar mutants of GAS in 3 days. IMPORTANCE: Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild and superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Since June 2022, several European countries, the US, and Australia are facing an upsurge of invasive life-threatening GAS infections. Finding a good vaccine antigen and understanding the role of virulence factors in GAS infections have been hampered, in part, by technical difficulties to transform the many different GAS strains and generate knockout mutants. Moreover, these tools must be adapted to a large range of different strains, since GAS are divided into more than 260 emm-types (M-type). We have set up a method allowing the generation of non-polar mutants of GAS in 3 days and in diverse backgrounds, which contrasts with previously published protocols.

2.
Crit Rev Microbiol ; 50(2): 241-265, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38140809

RESUMO

Group A Streptococcus (GAS) is a major human pathogen, causing diseases ranging from mild superficial infections of the skin and pharyngeal epithelium to severe systemic and invasive diseases. Moreover, post infection auto-immune sequelae arise by a yet not fully understood mechanism. The ability of GAS to cause a wide variety of infections is linked to the expression of a large set of virulence factors and their transcriptional regulation in response to various physiological environments. The use of transcriptomics, among others -omics technologies, in addition to traditional molecular methods, has led to a better understanding of GAS pathogenesis and host adaptation mechanisms. This review focusing on bacterial transcriptomic provides new insight into gene-expression patterns in vitro, ex vivo and in vivo with an emphasis on metabolic shifts, virulence genes expression and transcriptional regulators role.


Assuntos
Infecções Estreptocócicas , Transcriptoma , Humanos , Regulação Bacteriana da Expressão Gênica , Streptococcus pyogenes/genética , Streptococcus pyogenes/metabolismo , Perfilação da Expressão Gênica , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Proteínas de Bactérias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA