Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
2.
ACS Nano ; 14(11): 14740-14760, 2020 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-33044058

RESUMO

Luminescent colloidal CdSe nanorings are a recently developed type of semiconductor structure that have attracted interest due to the potential for rich physics arising from their nontrivial toroidal shape. However, the exciton properties and dynamics of these materials with complex topology are not yet well understood. Here, we use a combination of femtosecond vibrational spectroscopy, temperature-resolved photoluminescence (PL), and single-particle measurements to study these materials. We find that on transformation of CdSe nanoplatelets to nanorings, by perforating the center of platelets, the emission lifetime decreases and the emission spectrum broadens due to ensemble variations in the ring size and thickness. The reduced PL quantum yield of nanorings (∼10%) compared to platelets (∼30%) is attributed to an enhanced coupling between (i) excitons and CdSe LO-phonons at 200 cm-1 and (ii) negatively charged selenium-rich traps, which give nanorings a high surface charge (∼-50 mV). Population of these weakly emissive trap sites dominates the emission properties with an increased trap emission at low temperatures relative to excitonic emission. Our results provide a detailed picture of the nature of excitons in nanorings and the influence of phonons and surface charge in explaining the broad shape of the PL spectrum and the origin of PL quantum yield losses. Furthermore, they suggest that the excitonic properties of nanorings are not solely a consequence of the toroidal shape but also a result of traps introduced by puncturing the platelet center.

3.
Nanoscale ; 12(36): 18978-18986, 2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32915178

RESUMO

We synthesized strongly anisotropic CsPbBr3 nanocrystals with very narrow emission and absorption lines associated to confinement effects along one or two dimensions, called respectively nanoplatelets (NPLs) and nanosticks (NSTs). Transmission Electron Microscopy (TEM) images, absorption and photoluminescence (PL) spectra taken at low temperature are very precise tools to determine which kind of confinement has to be considered and to deduce the shape, the size and the thickness of nanocrystals under focus. We show that the energy of the band-edge absorption and PL peaks versus the inverse of the square of the NPL thickness has a linear behaviour from 11 monolayers (MLs) i.e. a thickness of 6.38 nm, until 4 MLs (2.32 nm) showing that self-energy correction compensates the increase of the exciton binding energy in thin NPLs as already observed in Cadmium chalcogenides-based NPLs. We also show that slight changes in the morphology of NSTs leads to a very drastic modification of their absorption spectra. Time-resolved PL of NSTs has a non-monotonous behaviour with temperature. At 5 K, a quasi-single exponential with a lifetime of 80 ps is obtained; at intermediate temperature, the decay is bi-exponential and at 150 K, a quasi-single exponential decay is recovered (≈0.4 ns). For NSTs, the exciton interaction with LO phonons governs the broadening of the absorption and PL peaks at room temperature and is stronger than in chalcogenides quantum dots and NPLs.

4.
ACS Nano ; 13(9): 10140-10153, 2019 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-31490653

RESUMO

Heterostructured two-dimensional colloidal nanoplatelets are a class of material that has attracted great interest for optoelectronic applications due to their high photoluminescence yield, atomically tunable thickness, and ultralow lasing thresholds. Of particular interest are laterally heterostructured core-crown nanoplatelets with a type-II band alignment, where the in-plane spatial separation of carriers leads to indirect (or charge transfer) excitons with long lifetimes and bright, highly Stokes shifted emission. Despite this, little is known about the nature of the lowest energy exciton states responsible for emission in these materials. Here, using polarization-controlled, steady-state, and time-resolved photoluminescence measurements, at temperatures down to 1.6 K and magnetic fields up to 30 T, we study the exciton fine structure and spin dynamics of archetypal type-II CdSe/CdTe core-crown nanoplatelets. Complemented by theoretical modeling and zero-field quantum beat measurements, we find the bright-exciton fine structure consists of two linearly polarized states with a fine structure splitting ∼50 µeV and an indirect exciton Landé g-factor of 0.7. In addition, we show the exciton spin lifetime to be in the microsecond range with an unusual B-3 magnetic field dependence. The discovery of linearly polarized exciton states and emission highlights the potential for use of such materials in display and imaging applications without polarization filters. Furthermore, the small exciton fine structure splitting and a long spin lifetime are fundamental advantages when envisaging CdSe/CdTe nanoplatelets as elementary bricks for the next generation of quantum devices, particularly given their ease of fabrication.

5.
Nanoscale ; 10(14): 6393-6401, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29560979

RESUMO

All inorganic CsPbX3 (X = Cl, Br, I) nanocrystals (NCs) belong to the novel class of confined metal-halide perovskites which are currently arousing enthusiasm and stimulating huge activity across several fields of optoelectronics due to outstanding properties. A deep knowledge of the band-edge excitonic properties of these materials is thus crucial to further optimize their performances. Here, high-resolution photoluminescence (PL) spectroscopy of single bromide-based NCs reveals the exciton fine structure in the form of sharp peaks that are linearly polarized and grouped in doublets or triplets, which directly mirror the adopted crystalline structure, tetragonal (D4h symmetry) or orthorhombic (D2h symmetry). Intelligible equations are found that show how the fundamental parameters (spin-orbit coupling, ΔSO, crystal field term, T, and electron-hole exchange energy, J) rule the energy spacings in doublets and triplets. From experimental data, fine estimations of each parameter are obtained. The analysis of the absorption spectra of an ensemble of NCs with a "quasi-bulk" behavior leads to ΔSO = 1.20 ± 0.06 eV and T = -0.34 ± 0.05 eV in CsPbBr3. The study of individual luminescence responses of NCs having sizes comparable to the exciton Bohr diameter, 7 nm, allows us to estimate the value of J to be around ≈3 meV in both tetragonal and orthorhombic phases. This value is already enhanced by confinement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA