Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Nat Med ; 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877116

RESUMO

In solid tumor oncology, circulating tumor DNA (ctDNA) is poised to transform care through accurate assessment of minimal residual disease (MRD) and therapeutic response monitoring. To overcome the sparsity of ctDNA fragments in low tumor fraction (TF) settings and increase MRD sensitivity, we previously leveraged genome-wide mutational integration through plasma whole-genome sequencing (WGS). Here we now introduce MRD-EDGE, a machine-learning-guided WGS ctDNA single-nucleotide variant (SNV) and copy-number variant (CNV) detection platform designed to increase signal enrichment. MRD-EDGESNV uses deep learning and a ctDNA-specific feature space to increase SNV signal-to-noise enrichment in WGS by ~300× compared to previous WGS error suppression. MRD-EDGECNV also reduces the degree of aneuploidy needed for ultrasensitive CNV detection through WGS from 1 Gb to 200 Mb, vastly expanding its applicability within solid tumors. We harness the improved performance to identify MRD following surgery in multiple cancer types, track changes in TF in response to neoadjuvant immunotherapy in lung cancer and demonstrate ctDNA shedding in precancerous colorectal adenomas. Finally, the radical signal-to-noise enrichment in MRD-EDGESNV enables plasma-only (non-tumor-informed) disease monitoring in advanced melanoma and lung cancer, yielding clinically informative TF monitoring for patients on immune-checkpoint inhibition.

2.
Clin Cancer Res ; 29(2): 422-431, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36346689

RESUMO

PURPOSE: To explore the role of NBN as a pan-cancer susceptibility gene. EXPERIMENTAL DESIGN: Matched germline and somatic DNA samples from 34,046 patients were sequenced using Memorial Sloan Kettering-Integrated Mutation Profiling of Actionable Cancer Targets and presumed pathogenic germline variants (PGV) identified. Allele-specific and gene-centered analysis of enrichment was conducted and a validation cohort of 26,407 pan-cancer patients was analyzed. Functional studies utilized cellular models with analysis of protein expression, MRN complex formation/localization, and viability assessment following treatment with γ-irradiation. RESULTS: We identified 83 carriers of 32 NBN PGVs (0.25% of the studied series), 40% of which (33/83) carried the Slavic founder p.K219fs. The frequency of PGVs varied across cancer types. Patients harboring NBN PGVs demonstrated increased loss of the wild-type allele in their tumors [OR = 2.7; confidence interval (CI): 1.4-5.5; P = 0.0024; pan-cancer], including lung and pancreatic tumors compared with breast and colorectal cancers. p.K219fs was enriched across all tumor types (OR = 2.22; CI: 1.3-3.6; P = 0.0018). Gene-centered analysis revealed enrichment of PGVs in cases compared with controls in the European population (OR = 1.9; CI: 1.3-2.7; P = 0.0004), a finding confirmed in the replication cohort (OR = 1.8; CI: 1.2-2.6; P = 0.003). Two novel truncating variants, p.L19* and p.N71fs, produced a 45 kDa fragment generated by alternative translation initiation that maintained binding to MRE11. Cells expressing these fragments showed higher sensitivity to γ-irradiation and lower levels of radiation-induced KAP1 phosphorylation. CONCLUSIONS: Burden analyses, biallelic inactivation, and functional evidence support the role of NBN as contributing to a broad cancer spectrum. Further studies in large pan-cancer series and the assessment of epistatic and environmental interactions are warranted to further define these associations.


Assuntos
Mutação em Linhagem Germinativa , Neoplasias Pancreáticas , Humanos , Mutação , Neoplasias Pancreáticas/patologia , Células Germinativas , Dano ao DNA/genética , Predisposição Genética para Doença , Proteínas Nucleares/genética , Proteínas de Ciclo Celular/genética
3.
Cancer Epidemiol Biomarkers Prev ; 31(7): 1466-1472, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35511739

RESUMO

BACKGROUND: A previous genome-wide association study identified several loci with genetic variants associated with prostate cancer survival time in two cohorts from Sweden. Whether these variants have an effect in other populations or if their effect is homogenous across the course of disease is unknown. METHODS: These variants were genotyped in a cohort of 1,298 patients. Samples were linked with age, PSA level, Gleason score, cancer stage at surgery, and times from surgery to biochemical recurrence to death from prostate cancer. SNPs rs2702185 and rs73055188 were tested for association with prostate cancer-specific survival time using a multivariate Cox proportional hazard model. SNP rs2702185 was further tested for association with time to biochemical recurrence and time from biochemical recurrence to death with a multi-state model. RESULTS: SNP rs2702185 at SMG7 was associated with prostate cancer-specific survival time, specifically the time from biochemical recurrence to prostate cancer death (HR, 2.5; 95% confidence interval, 1.4-4.5; P = 0.0014). Nine variants were in linkage disequilibrium (LD) with rs2702185; one, rs10737246, was found to be most likely to be functional based on LD patterns and overlap with open chromatin. Patterns of open chromatin and correlation with gene expression suggest that this SNP may affect expression of SMG7 in T cells. CONCLUSIONS: The SNP rs2702185 at the SMG7 locus is associated with time from biochemical recurrence to prostate cancer death, and its LD partner rs10737246 is predicted to be functional. IMPACT: These results suggest that future association studies of prostate cancer survival should consider various intervals over the course of disease.


Assuntos
Proteínas de Transporte , Neoplasias da Próstata , Proteínas de Transporte/genética , Cromatina , Estudo de Associação Genômica Ampla , Humanos , Masculino , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/mortalidade , Polimorfismo de Nucleotídeo Único , Antígeno Prostático Específico , Prostatectomia , Neoplasias da Próstata/genética , Neoplasias da Próstata/mortalidade
4.
Clin Cancer Res ; 27(7): 1997-2010, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33199492

RESUMO

PURPOSE: Nucleotide excision repair (NER) gene alterations constitute potential cancer therapeutic targets. We explored the prevalence of NER gene alterations across cancers and putative therapeutic strategies targeting these vulnerabilities. EXPERIMENTAL DESIGN: We interrogated our institutional dataset with mutational data from more than 40,000 patients with cancer to assess the frequency of putative deleterious alterations in four key NER genes. Gene-edited isogenic pairs of wild-type and mutant ERCC2 or ERCC3 cell lines were created and used to assess response to several candidate drugs. RESULTS: We found that putative damaging germline and somatic alterations in NER genes were present with frequencies up to 10% across multiple cancer types. Both in vitro and in vivo studies showed significantly enhanced sensitivity to the sesquiterpene irofulven in cells harboring specific clinically observed heterozygous mutations in ERCC2 or ERCC3. Sensitivity of NER mutants to irofulven was greater than to a current standard-of-care agent, cisplatin. Hypomorphic ERCC2/3-mutant cells had impaired ability to repair irofulven-induced DNA damage. Transcriptomic profiling of tumor tissues suggested codependencies between DNA repair pathways, indicating a potential benefit of combination therapies, which were confirmed by in vitro studies. CONCLUSIONS: These findings provide novel insights into a synthetic lethal relationship between clinically observed NER gene deficiencies and sensitivity to irofulven and its potential synergistic combination with other drugs.See related commentary by Jiang and Greenberg, p. 1833.


Assuntos
Reparo do DNA , Neoplasias , Cisplatino/farmacologia , Dano ao DNA , Reparo do DNA/genética , Células Germinativas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
5.
J Clin Oncol ; 38(13): 1398-1408, 2020 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-31922925

RESUMO

PURPOSE: Despite advances in DNA sequencing technology and expanded medical guidelines, the vast majority of individuals carrying pathogenic variants of common cancer susceptibility genes have yet to be identified. An alternative to population-wide genetic screening of healthy individuals would exploit the trend for genetic testing at the time of cancer diagnosis to guide therapy and prevention, combined with augmented familial diffusion or "cascade" of genomic risk information. METHODS: Using a multiple linear regression model, we derived the time interval to detect an estimated 3.9 million individuals in the United States with a pathogenic variant in 1 of 18 cancer susceptibility genes. We analyzed the impact of the proportion of incident patients sequenced, varying observed frequencies of pathogenic germline variants in patients with cancer, differential rates of diffusion of genetic information in families, and family size. RESULTS: The time to detect inherited cancer predisposing variants in the population is affected by the extent of cascade to first-, second-, and third-degree relatives (FDR, SDR, TDR, respectively), family size, prevalence of mutations in patients with cancer, and the proportion of patients with cancer sequenced. In a representative scenario, assuming a 7% prevalence of pathogenic variants across cancer types, an average family size of 3 per generation, and 15% of incident patients with cancer in the United States undergoing germline testing, the time to detect all 3.9 million individuals with pathogenic variants in 18 cancer susceptibility genes would be 46.2, 22.3, 13.6, and 9.9 years if 10%, 25%, 50%, and 70%, respectively, of all FDR, SDR, and TDR were tested for familial mutations. CONCLUSION: Peridiagnostic and cascade cancer genetic testing offers an alternative strategy to achieve population-wide identification of cancer susceptibility mutations.


Assuntos
Detecção Precoce de Câncer/métodos , Predisposição Genética para Doença/genética , Mutação em Linhagem Germinativa , Programas de Rastreamento/métodos , Neoplasias/genética , Adulto , Feminino , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Neoplasias/diagnóstico , Neoplasias/prevenção & controle , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estados Unidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA