Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Viruses ; 15(6)2023 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-37376554

RESUMO

A seasonal trend of African swine fever (ASF) outbreaks in domestic pig farms has been observed in affected regions of Eastern Europe. Most outbreaks have been observed during the warmer summer months, coinciding with the seasonal activity pattern of blood-feeding insects. These insects may offer a route for introduction of the ASF virus (ASFV) into domestic pig herds. In this study, insects (hematophagous flies) collected outside the buildings of a domestic pig farm, without ASFV-infected pigs, were analyzed for the presence of the virus. Using qPCR, ASFV DNA was detected in six insect pools; in four of these pools, DNA from suid blood was also identified. This detection coincided with ASFV being reported in the wild boar population within a 10 km radius of the pig farm. These findings show that blood from ASFV-infected suids was present within hematophagous flies on the premises of a pig farm without infected animals and support the hypothesis that blood-feeding insects can potentially transport the virus from wild boars into domestic pig farms.


Assuntos
Vírus da Febre Suína Africana , Febre Suína Africana , Suínos , Animais , Vírus da Febre Suína Africana/genética , Fazendas , Lituânia , Biosseguridade , Sus scrofa , Surtos de Doenças/veterinária , Insetos
2.
Front Vet Sci ; 9: 1046263, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686172

RESUMO

Introduction: Mosquitoes either biologically or mechanically transmit various vector-borne pathogens affecting pigs. Mosquito species display a wide variety of host preference, as well as host attraction and behaviours. Mosquito species attraction rates to- and feeding rates on pigs or other potential hosts, as well as the seasonal abundance of the mosquito species affects their pathogen transmission potential. Methods: We caught mosquitoes in experimental cages containing pigs situated in Romanian backyard farms. The host species of blood meals were identified with PCR and sequencing. Results: High feeding preferences for pigs were observed in Aedes vexans (90%), Anopheles maculipennis (80%) and Culiseta annulata (72.7%). However, due to a high abundance in the traps, Culex pipiens/torrentium were responsible for 37.9% of all mosquito bites on pigs in the Romanian backyards, despite low feeding rates on pigs in the cages (18.6%). We also found that other predominantly ornithophilic mosquito species, as well as mosquitoes that are already carrying a blood meal from a different (mammalian) host, were attracted to backyard pigs or their enclosure. Discussion: These results indicate that viraemic blood carrying, for instance, African swine fever virus, West-Nile virus or Japanese encephalitis virus could be introduced to these backyard pig farms and therefore cause an infection, either through subsequent feeding, via ingestion by the pig or by environmental contamination.

3.
Sci Rep ; 11(1): 3527, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33574465

RESUMO

We caught stable- and house flies on a Danish LA-MRSA positive pig farm. Stable- and house flies were housed together and culled over time to test for the presence of live LA-MRSA bacteria at 24 h intervals to establish the length of time for which LA-MRSA can persist on flies. On average, 7% of stable flies and 27% of house flies tested positive for LA-MRSA immediately upon removal from the farm. LA-MRSA prevalence decreased over time and estimates based on a Kaplan-Meier time-to-event analysis indicated that the probability of a stable- or house fly testing positive for LA-MRSA was 5.4% and 7.8% after 24 h, 3.5% and 4.3% after 48 h, 3.1% and 2.2% after 72 h and 0.4% and 0% after 96 h of removal from the pig farm, respectively. Simultaneously, we found that caged cultivated house flies became carriers of LA-MRSA, without direct contact with pigs, in the same proportions as wild flies inside the farm. We provide distance distributions of Danish pig farms and residential addresses as well as the calculated maximum dispersal potentials of stable- and house flies, which suggest that there is a potential for stable- and house flies dispersing live LA-MRSA bacteria into the surrounding environment of a pig farm. This potential should therefore be considered when modelling the spread between farms or the risk posed to humans living in close proximity to LA-MRSA pig farm sources.


Assuntos
Moscas Domésticas/microbiologia , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Muscidae/microbiologia , Infecções Estafilocócicas/microbiologia , Animais , Dinamarca , Fazendas , Moscas Domésticas/patogenicidade , Gado/microbiologia , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Muscidae/patogenicidade , Infecções Estafilocócicas/transmissão , Infecções Estafilocócicas/veterinária , Suínos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA