Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(13): 3945-3951, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38506837

RESUMO

We present a spectroscopic investigation of the vibrational and optoelectronic properties of WS2 domes in the 0-0.65 GPa range. The pressure evolution of the system morphology, deduced by the combined analysis of Raman and photoluminescence spectra, revealed a significant variation in the dome's aspect ratio. The modification of the dome shape caused major changes in the mechanical properties of the system resulting in a sizable increase of the out-of-plane compressive strain while keeping the in-plane tensile strain unchanged. The variation of the strain gradients drives a nonlinear behavior in both the exciton energy and radiative recombination intensity, interpreted as the consequence of a hybridization mechanism between the electronic states of two distinct minima in the conduction band. Our results indicate that pressure and strain can be efficiently combined in low dimensional systems with unconventional morphology to obtain modulations of the electronic band structure not achievable in planar crystals.

2.
Nano Lett ; 24(6): 1867-1873, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38306119

RESUMO

Few-layer graphene possesses low-energy carriers that behave as massive Fermions, exhibiting intriguing properties in both transport and light scattering experiments. Lowering the excitation energy of resonance Raman spectroscopy down to 1.17 eV, we target these massive quasiparticles in the split bands close to the K point. The low excitation energy weakens some of the Raman processes that are resonant in the visible, and induces a clearer frequency-separation of the substructures of the resonance 2D peak in bi- and trilayer samples. We follow the excitation-energy dependence of the intensity of each substructure, and comparing experimental measurements on bilayer graphene with ab initio theoretical calculations, we trace back such modifications on the joint effects of probing the electronic dispersion close to the band splitting and enhancement of electron-phonon matrix elements.

3.
Proc Natl Acad Sci U S A ; 121(4): e2221293121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241437

RESUMO

We study the Thomson scattering from highly oriented pyrolitic graphite excited by the extreme ultraviolet, coherent pulses of FERMI free electron laser (FEL). An apparent nonlinear behavior is observed and fully described in terms of the coherent nature of both exciting FEL beam and scattered radiation, producing an intensity-dependent enhancement of the Thomson scattering cross-section. The process resembles Dicke's superradiant phenomenon and is thus interpreted as the observation of superradiant Thomson scattering. The process also triggers the creation of coherent, low-q ([Formula: see text] 0.3 Å[Formula: see text]), low energy phonons. The experimental data and analysis provide quantitative information on the sample characteristics, absorption, scattering factor, and coherent phonon energies and populations and open the route for the investigation of the deep nature of complex materials.

4.
Phys Rev Lett ; 130(25): 256901, 2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37418733

RESUMO

We report on resonance Raman spectroscopy measurements with excitation photon energy down to 1.16 eV on graphene, to study how low-energy carriers interact with lattice vibrations. Thanks to the excitation energy close to the Dirac point at K, we unveil a giant increase of the intensity ratio between the double-resonant 2D and 2D^{'} peaks with respect to that measured in graphite. Comparing with fully ab initio theoretical calculations, we conclude that the observation is explained by an enhanced, momentum-dependent coupling between electrons and Brillouin zone-boundary optical phonons. This finding applies to two-dimensional Dirac systems and has important consequences for the modeling of transport in graphene devices operating at room temperature.


Assuntos
Grafite , Análise Espectral Raman , Análise Espectral Raman/métodos , Grafite/química , Fônons , Vibração , Elétrons
5.
J Phys Chem Lett ; 14(8): 2133-2140, 2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36802587

RESUMO

We present a high-pressure investigation of the semiconductor-to-metal transition in MoS2 and WS2 carried out by synchrotron-based far-infrared spectroscopy, to reconcile the controversial estimates of the metallization pressure found in the literature and gain new insight into the mechanisms ruling this electronic transition. Two spectral descriptors are found indicative of the onset of metallicity and of the origin of the free carriers in the metallic state: the absorbance spectral weight, whose abrupt increase defines the metallization pressure threshold, and the asymmetric line shape of the E1u peak, whose pressure evolution, interpreted within the Fano model, suggests the electrons in the metallic state originate from n-type doping levels. Combining our results with those reported in the literature, we hypothesize a two-step mechanism is at work in the metallization process, in which the pressure-induced hybridization between doping and conduction band states drives an early metallic behavior, while the band gap closes at higher pressures.

6.
ACS Omega ; 7(35): 31260-31270, 2022 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-36092562

RESUMO

The regulation of H2 evolution from formic acid dehydrogenation using recyclable photocatalyst films is an essential approach for on-demand H2 production. We have successfully generated Au-Cu nanoalloys using a laser ablation method and deposited them on TiO2 photocatalyst films (Au x Cu100-x /TiO2). The Au-Cu/TiO2 films were employed as photocatalysts for H2 production from formic acid dehydrogenation under light-emitting diode (LED) irradiation (365 nm). The highest H2 evolution rate for Au20Cu80/TiO2 is archived to 62,500 µmol h-1 g-1 per photocatalyst weight. The remarkable performance of Au20Cu80/TiO2 may account for the formation of Au-rich surfaces and the effect of Au alloying that enables Cu to sustain the metallic form on its surface. The metallic Au-Cu surface on TiO2 is vital to supply the photoexcited electrons of TiO2 to its surface for H2 evolution. The rate-determining step (RDS) is identified as the reaction of a surface-active species with protons. The results establish a practical preparation of metal alloy deposited on photocatalyst films using laser ablation to develop efficient photocatalysts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA