Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
J Am Chem Soc ; 146(19): 12950-12957, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38693778

RESUMO

Metal-organic framework (MOF) glasses have emerged as a new class of organic-inorganic hybrid glass materials. Considerable efforts have been devoted to unraveling the macroscopic dynamics of MOF glasses by studying their rheological behavior; however, their microscopic dynamics remain unclear. In this work, we studied the effect of vitrification on linker dynamics in ZIF-62 by solid-state 2H nuclear magnetic resonance (NMR) spectroscopy. 2H NMR relaxation analysis provided a detailed picture of the mobility of the ZIF-62 linkers, including local restricted librations and a large-amplitude twist; these details were verified by molecular dynamics. A comparison of ZIF-62 crystals and glasses revealed that vitrification does not drastically affect the fast individual flipping motions with large-amplitude twists, whereas it facilitates slow cooperative large-amplitude twist motions with a decrease in the activation barrier. These observations support the findings of previous studies, indicating that glassy ZIF-62 retains permanent porosity and that short-range disorder exists in the alignment of ligands because of distortion of the coordination angle.

2.
Int J Pharm ; 657: 124181, 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38697583

RESUMO

Maxillofacial defects, arising from trauma, oncological disease or congenital abnormalities, detrimentally affect daily life. Prosthetic repair offers the aesthetic and functional reconstruction with the help of materials mimicking natural tissues. 3D polymer printing enables the design of patient-specific prostheses with high structural complexity, as well as rapid and low-cost fabrication on-demand. However, 3D printing for prosthetics is still in the early stage of development and faces various challenges for widespread use. This is because the most suitable polymers for maxillofacial restoration are soft materials that do not have the required printability, mechanical strength of the printed parts, as well as functionality. This review focuses on the challenges and opportunities of 3D printing techniques for production of polymer maxillofacial prostheses using computer-aided design and modeling software. Review discusses the widely used polymers, as well as their blends and composites, which meet the most important assessment criteria, such as the physicochemical, biological, aesthetic properties and processability in 3D printing. In addition, strategies for improving the polymer properties, such as their printability, mechanical strength, and their ability to print multimaterial and architectural structures are highlighted. The current state of the prosthetic retention system is presented with a focus on actively used polymer adhesives and the recently implemented prosthesis-supporting osseointegrated implants, with an emphasis on their creation from 3D-printed polymers. The successful prosthetics is discussed in terms of the specificity of polymer materials at the restoration site. The approaches and technological prospects are also explored through the examples of the nasal, auricle and ocular prostheses, ranging from prototypes to end-use products.


Assuntos
Prótese Maxilofacial , Polímeros , Impressão Tridimensional , Humanos , Polímeros/química , Desenho de Prótese , Desenho Assistido por Computador , Animais , Retenção da Prótese/métodos
3.
Inorg Chem ; 63(11): 5083-5097, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38453174

RESUMO

Zeolites modified with metal cations are perspective catalysts for converting light alkenes to valuable chemicals. A crucial step of the transformation is an alkene interaction with zeolite to afford π-complex with metal cations. The mechanism of alkene bonding with cations is still unclear. To address this problem, propene adsorption on H+ (BroÌ·nsted acid site), Na+, Ca2+, Zn2+, Co2+, Cu2+, Cu+, and Ag+ cationic sites in ZSM-5 zeolite has been studied by quantum chemical calculations in terms of adsorption enthalpy, νC═C frequency, and natural bond orbital (NBO) analysis together with natural energy decomposition analysis (NEDA). It is revealed that the conventional concept of σ- and π-bonding is only partially applicable to alkene interaction with metal cations in zeolites. The orbital interaction between an alkene molecule and a metal site is more complex. Several different bonding mechanisms have been identified depending on the nature and electron configuration of the metal cation. This finding explains the complex correlations observed for propene π-complex stability and νC═C frequency shift or charge transfer from the alkene molecule. The results provide the basis for further understanding the interactions between alkenes and inorganic solid BroÌ·nsted and Lewis acids.

4.
Sports (Basel) ; 12(3)2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535735

RESUMO

Proteomic and metabolomic research enables quantitation of the molecular profile of athletes. Multiomic profiling was conducted using plasma samples collected from 18 male athletes performing aerobic activity (running) at high altitude. Metabolomic profiling detected changes in the levels of 4-hydroxyproline, methionine, oxaloacetate, and tyrosine during the recovery period. Furthermore, proteomic profiling revealed changes in expression of proteins contributing to the function of the immune system, muscle damage, metabolic fitness and performance, as well as hemostasis. Further research should focus on developing metabolic models to monitor training intensity and athlete adaptation.

5.
Phys Chem Chem Phys ; 25(40): 27516-27523, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37800380

RESUMO

The UiO-66 (Zr) metal-organic framework (MOF) is of notable interest due to its facile synthesis, robustness under a wide range of chemical and physical conditions and its capability to separate industrially relevant hydrocarbons mixtures. However, the knowledge of the molecular mechanisms behind these process remains limited. Here, we present a combined experimental (2H NMR) and computational study of the molecular mobility, transport and adsorption of C5 alkanes isomers in a dehydroxylated UiO-66 (Zr) MOF. We show that the tetrahedral cages of the MOF are the preferred adsorption location for both n-pentane and isopentane. In a binary mixture of the isomers, isopentane interacts more strongly with the material leading it to occupy more of the tetrahedral cages than n-pentane, resulting in an isopentane/n-pentane adsorption selectivity of αads = 2 (at 373 K). At the same time, the microscopic diffusivity for n-pentane, Dn (En = 18 kJ mol-1), is significantly lower than for isopentane, Diso (Eiso = 28 kJ mol-1), which results in a high separation selectivity for a n-pentane/isopentane mixture of α ≈ 13 (at 300 K). This shows that the UiO-66 MOF is indeed a promising active material for use in light hydrocarbon separation processes.

6.
J Phys Chem B ; 127(43): 9336-9345, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37857325

RESUMO

Observing and quantifying the like-charge attraction in liquids and solutions is still challenging. However, we showed that elusive cation-cation hydrogen bonding may govern the structure and interaction in hydroxyl-functionalized ionic liquids. Therefore, cationic cluster formation depends on the shape, charge distribution, and functionality of the ions. We demonstrated by means of solid-state 2H NMR spectroscopy that cationic clusters change the structure and dynamics of ionic liquids. With increasing alkyl chain length, we observed two deuteron quadrupole coupling constants for the OD groups, differing by about 30 kHz. The lower value was assigned to the cation-cation interaction, indicating that the average (c-c) hydrogen bonds are stronger than the (c-a) hydrogen bonds between the cation and the anion despite the repulsive and attractive Coulomb interaction in the first and latter cases. Ion mobility could be studied by 2H NMR spectroscopy, although the deuterons in the hydrogen-bonded clusters underwent fast exchange. Our results also showed that simple relaxation models are not applicable anymore and that anisotropic motion must be considered.

7.
Phys Chem Chem Phys ; 25(41): 28043-28051, 2023 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-37847194

RESUMO

67Zn MAS NMR spectroscopy was used to characterize the state of Zn in Zn-modified zeolites ZSM-5. Two 67Zn enriched zeolite samples were prepared: by solid-state exchange with metal 67Zn (Zn2+/ZSM-5 sample) and by ion exchange with zinc formate solution (ZnO/H-ZSM-5 sample), both containing ca. 3.8 wt% Zn. The elemental analysis, TEM, and quantitative BAS and aluminum analyses with 1H and 27Al MAS NMR have shown that Zn2+/ZSM-5 contains zinc in the form of Zn2+ cations, while both ZnO species and Zn2+ cations are present in ZnO/H-ZSM-5 besides BAS. 67Zn MAS NMR has detected the signal of Zn in a tetrahedral environment from ZnO species for both the activated and hydrated ZnO/H-ZSM-5 zeolite. The signal of Zn in an octahedral environment was detected for the hydrated Zn2+/ZSM-5 and ZnO/H-ZSM-5 zeolites. This signal may belong to zinc cation [HOZn]+ or Zn(OH)2 species surrounded by water molecules. Quantitative 67Zn MAS NMR analysis has shown that only 27 and 38% of zinc loaded in the zeolite is visible for the activated and hydrated ZnO/H-ZSM-5 zeolite, and 24% of Zn is visible for the hydrated Zn2+/ZSM-5. Zinc in the form of ZnO species is entirely visible in both the activated and hydrated ZnO/H-ZSM-5 zeolite, while Zn2+ cations are not detected at all for the activated sample and only 29% of Zn2+ cations is visible for the hydrated zeolite. Detection of only a part of Zn2+ cations in the form of [HOZn]+ or Zn(OH)2 species in octahedral environment presumes only partial hydrolysis of the bond of Zn2+ cation with framework oxygen and further solvation of the Zn species formed at hydrolysis by the adsorbed water.

8.
ChemSusChem ; 16(18): e202300520, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37272258

RESUMO

The adsorption method for atmospheric water harvesting (AWH) is considered as a promising heat-driven technology for potable water supply in arid regions. This research is focused on novel composite sorbents based on hygroscopic salts loaded in the pores of MIL-101(Cr) developed for AWH. The composites based on LiCl, LiBr, CaCl2 , and Ca(NO3 )2 were synthesized and comprehensively studied by SEM, XRD, N2 adsorption, and thermogravimetric methods. We evidence that the CaCl2 /MIL-101(Cr) composite demonstrates a high net water uptake of 0.52-0.59 g_(H2 O)/g_(composite) per cycle under conditions of Saudi Arabia and the Sahara desert as the reference regions with extra-dry climate, which exceeds the appropriate values for other adsorbents. It is shown that water adsorption on the composite cannot be presented as a combination of the adsorption on the components, thus indicating a synergistic effect. A detailed characterization of water coordination, mobility, and hydrogen bonding within the confined CaCl2 hydrates and salt solution using solid-state 2 H NMR spectroscopy has been performed. It is established that pore confinement promotes a prolonged transition to a dynamically melted state of the hydrated salt and a notable decrease of the melting temperature, which facilitates the molecular transport of water and causes the alteration of sorption properties of CaCl2 inside MIL-101 pores. Finally, the performance of AWH employing CaCl2 /MIL-101(Cr) was evaluated in terms of the fractions of water extracted and collected, and the specific energy consumption, demonstrating its high potential for AWH.

9.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239889

RESUMO

The lack of suitable autologous grafts and the impossibility of using synthetic prostheses for small artery reconstruction make it necessary to develop alternative efficient vascular grafts. In this study, we fabricated an electrospun biodegradable poly(ε-caprolactone) (PCL) prosthesis and poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/poly(ε-caprolactone) (PHBV/PCL) prosthesis loaded with iloprost (a prostacyclin analog) as an antithrombotic drug and cationic amphiphile with antibacterial activity. The prostheses were characterized in terms of their drug release, mechanical properties, and hemocompatibility. We then compared the long-term patency and remodeling features of PCL and PHBV/PCL prostheses in a sheep carotid artery interposition model. The research findings verified that the drug coating of both types of prostheses improved their hemocompatibility and tensile strength. The 6-month primary patency of the PCL/Ilo/A prostheses was 50%, while all PHBV/PCL/Ilo/A implants were occluded at the same time point. The PCL/Ilo/A prostheses were completely endothelialized, in contrast to the PHBV/PCL/Ilo/A conduits, which had no endothelial cells on the inner layer. The polymeric material of both prostheses degraded and was replaced with neotissue containing smooth-muscle cells; macrophages; proteins of the extracellular matrix such as type I, III, and IV collagens; and vasa vasorum. Thus, the biodegradable PCL/Ilo/A prostheses demonstrate better regenerative potential than PHBV/PCL-based implants and are more suitable for clinical use.


Assuntos
Prótese Vascular , Enxerto Vascular , Animais , Ovinos , Polímeros , Poliésteres , Implantação de Prótese
10.
J Phys Chem Lett ; 14(17): 4019-4025, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37093004

RESUMO

Attractive interactions between ions of like charge remain an elusive concept. Observing and quantifying this type of interaction in liquids and solutions is still a major challenge. Recently, we have shown that cation-cation interactions are present in hydroxyl-functionalized ionic liquids and that they can be controlled by the shape, charge distribution and functionality of the ions. In the present study, we demonstrate that cationic cluster formation does not only change the local structures of the ionic liquids but also influences the dynamics of the cations in a characteristic way. We show that solid-state 2H NMR spectroscopy is well suited for the study of molecular motion, even if the hydrogen bonded species of interest are indistinguishable due to fast deuteron exchange. We also provide valuable information about the applicability of well-accepted relaxation models.

11.
Life (Basel) ; 13(2)2023 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-36836953

RESUMO

Reduction in tumor necrosis factor (αTNF) and interleukin-6 (IL-6) activities is a widely utilized strategy for the treatment of rheumatoid arthritis (RA) with a high success rate. Despite both schemes targeting the deprivation of inflammatory reactions caused by the excessive activity of cytokines, their mechanisms of action and the final output are still unequal. This was a comparative longitudinal study that lasted for 24 weeks and aimed to find the answer to why the two schemes of therapy can pass out of proportion in attitude of their efficiency. What are the differences in metabolic and proteomic responses among patients who were being treated by either the anti-TNF or anti-IL-6 strategy? We found increased levels of immunoglobulins A and G (more than 2-fold in anti-IL-6 and more than 4-5-fold in anti-TNF groups) at the final stage (24 weeks) of monitoring but the most profound increase was determined for µ-chains of immunoglobulins in both groups of study. Metabolomic changes displayed main alterations with regard to arginine metabolism and collagen maintenance, where arginine increased 8.86-fold (p < 0.001) in anti-TNF and 5.71-fold (p < 0.05) in anti-IL-6 groups but patients treated by the anti-TNF scheme suffered a higher depletion of arginine before the start of therapy. Some indicators of matrix and bone tissue degradation also increased 4-hydroxyproline (4-HP) more than 6-fold (p < 0.001) in anti-TNF and more than 2-fold (p < 0.05) in the anti-IL-6 group, but the growth dynamics in the anti-IL6 group was delayed (gradually raised at week 24) compared to the anti-TNF group (raised at week 12) following a smooth reduction. The ELISA analysis of IL-6 and TNFα concentration in the study population supported proteomic and metabolomic data. A positive correlation between ΔCDAI and ΔDAS28 indicators and ESR and CRP was established for the majority of patients after 24 weeks of treatment where ESR and CRP reduced by 20% and 40% finally, respectively. A regression model using the Forest Plot was estimated to elucidate the impact of the most significant clinical, biochemical, and anthropometric indicators for the evaluation of differences between considered anti-TNF and anti-IL-6 schemes of therapy.

12.
Sci Rep ; 13(1): 2139, 2023 02 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747015

RESUMO

Despite of multiple systematic studies of schizophrenia based on proteomics, metabolomics, and genome-wide significant loci, reconstruction of underlying mechanism is still a challenging task. Combination of the advanced data for quantitative proteomics, metabolomics, and genome-wide association study (GWAS) can enhance the current fundamental knowledge about molecular pathogenesis of schizophrenia. In this study, we utilized quantitative proteomic and metabolomic assay, and high throughput genotyping for the GWAS study. We identified 20 differently expressed proteins that were validated on an independent cohort of patients with schizophrenia, including ALS, A1AG1, PEDF, VTDB, CERU, APOB, APOH, FASN, GPX3, etc. and almost half of them are new for schizophrenia. The metabolomic survey revealed 18 group-specific compounds, most of which were the part of transformation of tyrosine and steroids with the prevalence to androgens (androsterone sulfate, thyroliberin, thyroxine, dihydrotestosterone, androstenedione, cholesterol sulfate, metanephrine, dopaquinone, etc.). The GWAS assay mostly failed to reveal significantly associated loci therefore 52 loci with the smoothened p < 10-5 were fractionally integrated into proteome-metabolome data. We integrated three omics layers and powered them by the quantitative analysis to propose a map of molecular events associated with schizophrenia psychopathology. The resulting interplay between different molecular layers emphasizes a strict implication of lipids transport, oxidative stress, imbalance in steroidogenesis and associated impartments of thyroid hormones as key interconnected nodes essential for understanding of how the regulation of distinct metabolic axis is achieved and what happens in the conditioned proteome and metabolome to produce a schizophrenia-specific pattern.


Assuntos
Estudo de Associação Genômica Ampla , Esquizofrenia , Humanos , Proteoma/metabolismo , Proteômica/métodos , Esquizofrenia/genética , Metabolômica/métodos , Metaboloma/fisiologia
13.
Sports (Basel) ; 11(2)2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36828315

RESUMO

Neuroplasticity and inflammation play important part in the body's adaptive reactions in response to prolonged physical activity. These processes are associated with the cross-interaction of the nervous and immune systems, which is realized through the transmission of signals from neurotransmitters and cytokines. Using the methods of flow cytometry and advanced biochemical analysis of blood humoral parameters, we showed that intense and prolonged physical activity at the anaerobic threshold, without nutritional and metabolic support, contributes to the development of exercise-induced immunosuppression in sportsmen. These athletes illustrate the following signs of a decreased immune status: fewer absolute indicators of the content of leukocytes, lowered values in the immunoregulatory index (CD4+/CD8+), and diminished indicators of humoral immunity (immunoglobulins A, M, and G, and IFN-γ). These factors characterize the functional state of cellular and humoral immunity and their reduction affects the prenosological risk criteria, indicative of the athletes' susceptibility to develop exercise-induced immunosuppression.

14.
Sports (Basel) ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36828321

RESUMO

The aim of this study was to determine the influence of high-intensity training under extreme conditions (T = 40 °C) on the metabolism and immunological reactions of athletes. Male triathletes (n = 11) with a high level of sports training performed load testing to failure (17 ± 2.7 min) and maximum oxygen consumption (64.1 ± 6.4 mL/min/kg). Blood plasma samples were collected before and immediately after exercise. Mass spectrometric metabolomic analysis identified 30 metabolites and 6 hormones in the plasma, of which 21 and 4 changed after exercise, respectively. Changes in the intermediate products of tricarboxylic and amino acids were observed (FC > 1.5) after exercise. The obtained data can be associated with the effect of physical activity on metabolism in athletes. Therefore, constant monitoring of the biochemical parameters of athletes can help coaches identify individual shortcomings in a timely manner and track changes, especially as the volume of training increases. In addition, it was revealed that the immunological reaction (manifestation of a hyperactive reaction to food components) is personalized in nature. Therefore, it is important for coaches and sports doctors to analyze and control the eating behavior of athletes to identify food intolerances or food allergies in a timely manner and develop an individual elimination diet.

15.
Chemistry ; 29(5): e202202962, 2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36310393

RESUMO

Kinetics of H/D hydrogen exchange between deuterated isobutane-d10 and Brønsted acid sites (BAS) of three zeolite samples (H-BEA, ZnO/H-BEA, Zn2+ /H-BEA) were monitored with 1 H MAS NMR in situ at 343-468 K. The regioselective H/D exchange in the methyl groups detected on H-BEA can be rationalized in terms of the mechanism of indirect exchange, which involves protonation of the intermediate olefin and further hydride abstraction from the other alkane molecule by the formed carbenium ion. Loading of Zn species in the zeolite results in a decrease of the rate and an increase of the activation energy of the exchange. The loaded Zn species provide the tuning effect on the reaction occurrence, changing the mechanism from the indirect one to the mechanism of the direct exchange.


Assuntos
Butanos , Zeolitas , Butanos/química , Zeolitas/química , Hidrogênio/química , Alcanos , Zinco/química
16.
Int J Mol Sci ; 23(23)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36498980

RESUMO

Tear samples collected from patients with central retinal vein occlusion (CRVO; n = 28) and healthy volunteers (n = 29) were analyzed using a proteomic label-free absolute quantitative approach. A large proportion (458 proteins with a frequency > 0.6) of tear proteomes was found to be shared between the study groups. Comparative proteomic analysis revealed 29 proteins (p < 0.05) significantly differed between CRVO patients and the control group. Among them, S100A6 (log (2) FC = 1.11, p < 0.001), S100A8 (log (2) FC = 2.45, p < 0.001), S100A9 (log2 (FC) = 2.08, p < 0.001), and mesothelin ((log2 (FC) = 0.82, p < 0.001) were the most abundantly represented upregulated proteins, and ß2-microglobulin was the most downregulated protein (log2 (FC) = −2.13, p < 0.001). The selected up- and downregulated proteins were gathered to customize a map of CRVO-related critical protein interactions with quantitative properties. The customized map (FDR < 0.01) revealed inflammation, impairment of retinal hemostasis, and immune response as the main set of processes associated with CRVO ischemic condition. The semantic analysis displayed the prevalence of core biological processes covering dysregulation of mitochondrial organization and utilization of improperly or topologically incorrect folded proteins as a consequence of oxidative stress, and escalating of the ischemic condition caused by the local retinal hemostasis dysregulation. The most significantly different proteins (S100A6, S100A8, S100A9, MSLN, and ß2-microglobulin) were applied for the ROC analysis, and their AUC varied from 0.772 to 0.952, suggesting probable association with the CRVO.


Assuntos
Oclusão da Veia Retiniana , Humanos , Idoso , Proteoma , Proteômica , Retina , Isquemia/complicações
17.
Int J Mol Sci ; 23(24)2022 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-36555748

RESUMO

Herein, we aimed to highlight current "gaps" in the understanding of the potential interactions between the Anle138b isomer ligand, a promising agent for clinical research, and the intrinsically disordered alpha-synuclein protein. The presence of extensive unstructured areas in alpha-synuclein determines its existence in the cell of partner proteins, including the cyclophilin A chaperone, which prevents the aggregation of alpha-synuclein molecules that are destructive to cell life. Using flexible and cascaded molecular docking techniques, we aimed to expand our understanding of the molecular architecture of the protein complex between alpha-synuclein, cyclophilin A and the Anle138b isomer ligand. We demonstrated the possibility of intricate complex formation under cellular conditions and revealed that the main interactions that stabilize the complex are hydrophobic and involve hydrogen.


Assuntos
Ciclofilina A , alfa-Sinucleína , alfa-Sinucleína/metabolismo , Simulação de Acoplamento Molecular , Ligantes , Amiloide/metabolismo , Proteínas Amiloidogênicas
18.
Int J Mol Sci ; 23(19)2022 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-36232976

RESUMO

This study explored the mechanisms by which the stability of super-secondary structures of the 3ß-corner type autonomously outside the protein globule are maintained in an aqueous environment. A molecular dynamic (MD) study determined the behavioral diversity of a large set of non-homologous 3ß-corner structures of various origins. We focused on geometric parameters such as change in gyration radius, solvent-accessible area, major conformer lifetime and torsion angles, and the number of hydrogen bonds. Ultimately, a set of 3ß-corners from 330 structures was characterized by a root mean square deviation (RMSD) of less than 5 Å, a change in the gyration radius of no more than 5%, and the preservation of amino acid residues positioned within the allowed regions on the Ramachandran map. The studied structures retained their topologies throughout the MD experiments. Thus, the 3ß-corner structure was found to be rather stable per se in a water environment, i.e., without the rest of a protein molecule, and can act as the nucleus or "ready-made" building block in protein folding. The 3ß-corner can also be considered as an independent object for study in field of structural biology.


Assuntos
Simulação de Dinâmica Molecular , Água , Aminoácidos , Estrutura Secundária de Proteína , Solventes/química
19.
Sports (Basel) ; 10(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36287773

RESUMO

Training and competitive periods can temporarily impair the performance of an athlete. This disruption can be short- or long-term, lasting up to several days. We analyzed the health indicators of 3661 athletes during an in-depth medical examination. At the time of inclusion in the study, the athletes were healthy. Instrumental examinations (fluorography, ultrasound examination of the abdominal cavity and pelvic organs, echocardiography, electrocardiography, and stress testing "to failure"), laboratory examinations (general urinalysis and biochemical and general clinical blood analysis), and examinations by specialists (ophthalmologist, otolaryngologist, surgeon, cardiologist, neurologist, dentist, gynecologist (women), endocrinologist, and therapist) were performed. This study analyzed the significance of determining the indicators involved in the implementation of the "catabolism" and "anabolism" phenotypes using the random forest and multinomial logistic regression machine learning methods. The use of decision forest and multinomial regression models made it possible to identify the most significant indicators of blood and urine biochemistry for the analysis of phenotypes as a characterization of the effectiveness of recovery processes in the post-competitive period in athletes. We found that the parameters of muscle metabolism, such as aspartate aminotransferase, creatine kinase, lactate dehydrogenase, and alanine aminotransferase levels, and the parameters of the ornithine cycle, such as creatinine, urea acid, and urea levels, made the most significant contribution to the classification of two types of metabolism: catabolism and anabolism.

20.
Phys Chem Chem Phys ; 24(36): 22241-22249, 2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36098054

RESUMO

13C MAS NMR spectroscopy is a powerful technique to study the mechanisms of hydrocarbon transformations on heterogeneous catalysts. It can reliably identify the surface intermediates and the adsorbed products based on the analysis of their 13C chemical shifts, δ(13C). However, the unambiguous assignment of the detected signals is always a challenge due to the uncertainty of the nature of the surface intermediates formed and the mechanism of adsorbed species interaction with active sites. The way to solve this problem is the application of DFT calculations to predict chemical shifts for the expected intermediate hydrocarbon species. Herein, the methodology for δ(13C) chemical shift calculations for adsorbed species has been proposed. It includes: (i) zeolite framework optimization with periodic DFT (pPBE); (ii) medium-sized cluster geometry optimization with hybrid GGA (PBE0), and (iii) σ(13C) values calculation followed by δ(13C) estimation using the linear regression method. It is inferred that the TPSS/cc-pVTZ method provides the best computational cost/accuracy ratio for the set of adsorbed hydrocarbon species that was previously detected experimentally on the surface of Zn-containing zeolites. The drawbacks of the computation method have also been revealed and discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA