Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rep ; 9(7): e14828, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33904662

RESUMO

Intestinal oxalate transport involves Cl- /HCO3- exchangers but how this transport is regulated is not currently known. NHE3 (Slc9a3), an apical Na+ /H+ exchanger, is an established target for regulation of electroneutral NaCl absorption working in concert with Cl- /HCO3- exchangers. To test whether NHE3 could be involved in regulation of intestinal oxalate transport and renal oxalate handling we compared urinary oxalate excretion rates and intestinal transepithelial fluxes of 14 C-oxalate and 22 Na+ between NHE3 KO and wild-type (WT) mice. NHE3 KO kidneys had lower creatinine clearance suggesting reduced GFR, but urinary oxalate excretion rates (µmol/24 h) were similar compared to the WT but doubled when expressed as a ratio of creatinine. Intestinal transepithelial fluxes of 14 C-oxalate and 22 Na+ were measured in the distal ileum, cecum, and distal colon. The absence of NHE3 did not affect basal net transport rates of oxalate or sodium across any intestinal section examined. Stimulation of intracellular cAMP with forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX) led to an increase in net oxalate secretion in the WT distal ileum and cecum and inhibition of sodium absorption in the cecum and distal colon. In NHE3 KO cecum, cAMP stimulation of oxalate secretion was impaired suggesting the possibility of a role for NHE3 in this process. Although, there is little evidence for a role of NHE3 in basal intestinal oxalate fluxes, NHE3 may be important for cAMP stimulation of oxalate in the cecum and for renal handling of oxalate.


Assuntos
Mucosa Intestinal/metabolismo , Oxalatos/metabolismo , Trocador 3 de Sódio-Hidrogênio/metabolismo , Sódio/metabolismo , 1-Metil-3-Isobutilxantina/farmacologia , Animais , Colforsina/farmacologia , AMP Cíclico/metabolismo , Inibidores Enzimáticos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Transporte de Íons , Camundongos , Camundongos Endogâmicos C57BL , Oxalatos/urina , Trocador 3 de Sódio-Hidrogênio/genética
2.
Exp Physiol ; 104(3): 334-344, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30615234

RESUMO

NEW FINDINGS: What is the central question of this study? The tracer 36 Cl- , currently used to measure transepithelial Cl- fluxes, has become prohibitively expensive, threatening its future use. 125 Iodide, previously validated alongside 36 Cl- as a tracer of Cl- efflux by cells, has not been tested as a surrogate for 36 Cl- across epithelia. What is the main finding and its importance? We demonstrate that 125 I- can serve as an inexpensive replacement for measuring Cl- transport across mouse large intestine, tracking Cl- transport in response to cAMP stimulation (inducing Cl- secretion) in the presence and absence of the main gastrointestinal Cl- -HCO3- exchanger, DRA. ABSTRACT: Chloride transport is important for driving fluid secretion and absorption by the large intestine, with dysregulation resulting in diarrhoea-associated pathologies. The radioisotope 36 Cl- has long been used as a tracer to measure epithelial Cl- transport but is prohibitively expensive. 125 Iodide has been used as an alternative to 36 Cl- in some transport assays but has never been validated as an alternative for tracing bidirectional transepithelial Cl- fluxes. The goal of this study was to validate 125 I- as an alternative to 36 Cl- for measurement of Cl- transport by the intestine. Simultaneous fluxes of 36 Cl- and 125 I- were measured across the mouse caecum and distal colon. Net Cl- secretion was induced by the stimulation of cAMP with a cocktail of forskolin (FSK) and 3-isobutyl-1-methylxanthine (IBMX). Unidirectional fluxes of 125 I- correlated well with 36 Cl- fluxes after cAMP-induced net Cl- secretion, occurring predominantly through a reduction in the absorptive mucosal-to-serosal Cl- flux rather than by stimulation of the secretory serosal-to-mucosal Cl- flux. Correlations between 125 I- fluxes and 36 Cl- fluxes were maintained in epithelia from mice lacking DRA (Slc26a3), the main Cl- -HCO3- exchanger responsible for Cl- absorption by the large intestine. Lower rates of Cl- and I- absorption in the DRA knockout intestine suggest that DRA might have a previously unrecognized role in iodide uptake. This study validates that 125 I- traces transepithelial Cl- fluxes across the mouse large intestine, provides insights into the mechanism of net Cl- secretion and suggests that DRA might be involved in intestinal iodide absorption.


Assuntos
Cloretos/metabolismo , Colo/metabolismo , Epitélio/metabolismo , Iodetos/metabolismo , Transporte de Íons/fisiologia , Animais , Absorção Intestinal/fisiologia , Mucosa Intestinal/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transportadores de Sulfato/metabolismo
3.
Am J Physiol Gastrointest Liver Physiol ; 316(1): G82-G94, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30383413

RESUMO

The anion exchanger SAT-1 [sulfate anion transporter 1 (Slc26a1)] is considered an important regulator of oxalate and sulfate homeostasis, but the mechanistic basis of these critical roles remain undetermined. Previously, characterization of the SAT-1-knockout (KO) mouse suggested that the loss of SAT-1-mediated oxalate secretion by the intestine was responsible for the hyperoxaluria, hyperoxalemia, and calcium oxalate urolithiasis reportedly displayed by this model. To test this hypothesis, we compared the transepithelial fluxes of 14C-oxalate, 35SO42- , and 36Cl- across isolated, short-circuited segments of the distal ileum, cecum, and distal colon from wild-type (WT) and SAT-1-KO mice. The absence of SAT-1 did not impact the transport of these anions by any part of the intestine examined. Additionally, SAT-1-KO mice were neither hyperoxaluric nor hyperoxalemic. Instead, 24-h urinary oxalate excretion was almost 50% lower than in WT mice. With no contribution from the intestine, we suggest that this may reflect the loss of SAT-1-mediated oxalate efflux from the liver. SAT-1-KO mice were, however, profoundly hyposulfatemic, even though there were no changes to intestinal sulfate handling, and the renal clearances of sulfate and creatinine indicated diminished rates of sulfate reabsorption by the proximal tubule. Aside from this distinct sulfate phenotype, we were unable to reproduce the hyperoxaluria, hyperoxalemia, and urolithiasis of the original SAT-1-KO model. In conclusion, oxalate and sulfate transport by the intestine were not dependent on SAT-1, and we found no evidence supporting the long-standing hypothesis that intestinal SAT-1 contributes to oxalate and sulfate homeostasis. NEW & NOTEWORTHY SAT-1 is a membrane-bound transport protein expressed in the intestine, liver, and kidney, where it is widely considered essential for the excretion of oxalate, a potentially toxic waste metabolite. Previously, calcium oxalate kidney stone formation by the SAT-1-knockout mouse generated the hypothesis that SAT-1 has a major role in oxalate excretion via the intestine. We definitively tested this proposal and found no evidence for SAT-1 as an intestinal anion transporter contributing to oxalate homeostasis.


Assuntos
Antiporters/genética , Homeostase/fisiologia , Hiperoxalúria/metabolismo , Nefrolitíase/metabolismo , Oxalatos/metabolismo , Transportadores de Sulfato/genética , Animais , Cloretos/metabolismo , Homeostase/genética , Mucosa Intestinal/metabolismo , Intestinos/fisiologia , Transporte de Íons/fisiologia , Rim/metabolismo , Fígado/metabolismo , Camundongos Knockout , Nefrolitíase/genética , Transportadores de Sulfato/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA