Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 325(2): 324-30, 2008 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-18565534

RESUMO

Micellization and solution properties of the aglycon triterpenoids asiatic acid (AA) and madecassic acid (MA) were examined experimentally and in computational simulations. AA and MA belong to the large class of bioactive aglycon triterpenoids, for which limited physicochemical data are available. In this study, solubility, partition coefficient, critical micelle concentrations (CMC), and surface tensions of AA and MA were measured. Reverse phase HPLC data, supported by dye probe experiments and drop shape analysis, showed the CMC in phosphate buffered saline (PBS) to be 15+/-2 microM, and 86+/-9 microM for AA and MA, respectively. The surface tensions of AA and MA in PBS were 64.1 and 64.4 mN/m, respectively. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry indicated the aggregation numbers of AA and MA to be 5 to 7. Molecular dynamics simulations confirmed that molecular association could occur between 5 and 7 molecules in solution. The IC(50) of AA and MA on human small cell carcinoma and human glioblastoma cell lines was 25+/-5 microM and 66+/-13 microM, respectively. The IC(50) is within the range of calculated CMC of AA and MA in bioassay media, suggesting that the micellar aggregates may lead to their cytotoxicity.


Assuntos
Micelas , Triterpenos/química , Bioensaio , Carcinoma de Células Pequenas/tratamento farmacológico , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Simulação por Computador , Glioblastoma/tratamento farmacológico , Humanos , Concentração Inibidora 50 , Neoplasias Pulmonares/tratamento farmacológico , Conformação Molecular , Triterpenos Pentacíclicos , Solubilidade , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Tensão Superficial , Triterpenos/isolamento & purificação , Triterpenos/farmacologia
2.
J Phys Chem B ; 112(8): 2357-71, 2008 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-18247591

RESUMO

The self-assembly behavior of the triterpenoids asiatic acid (AA) and madecassic acid (MA), both widely studied bioactive phytochemicals that are similar in structure to bile salts, were investigated in aqueous solution through atomistic-level molecular dynamics (MD) simulation. AA and MA molecules initially distributed randomly in solution were observed to aggregate into micelles during 75 ns of MD simulation. A "hydrophobic contact criterion" was developed to identify micellar aggregates from the computer simulation results. From the computer simulation data, the aggregation number of AA and MA micelles, the monomer concentration, the principal moments of the micelle radius of gyration tensor, the one-dimensional growth exhibited by AA and MA micelles as the aggregation number increases, the level of internal ordering within AA and MA micelles (quantified using two different orientational order parameters), the local environment of atoms within AA and MA in the micellar environment, and the total, hydrophilic, and hydrophobic solvent accessible surface areas of the AA and MA micelles were each evaluated. The MD simulations conducted provide insights into the self-assembly behavior of structurally complex, nontraditional surfactants in aqueous solution. Motivated by the high computational cost required to obtain an accurate estimate of the critical micelle concentrations (CMCs) of AA and MA from evaluation of the average monomer concentration present in the AA and MA simulation cells, a modified computer simulation/molecular-thermodynamic model (referred to as the MCS-MT model) was formulated to quantify the free-energy change associated with optimal AA and MA micelle formation in order to predict the CMCs of AA and MA. The predicted CMC of AA was found to be 59 microM, compared with the experimentally measured CMC of 17 microM, and the predicted CMC of MA was found to be 96 microM, compared with the experimentally measured CMC of 62 microM. The AA and MA CMCs predicted using the MCS-MT model are much more accurate than the CMCs inferred from the monomer concentrations of AA and MA present in the simulation cells after micelle self-assembly (2390 microM and 11,300 microM, respectively). The theoretical modeling results obtained for AA and MA indicate that, by combining computer simulation inputs with molecular-thermodynamic models of surfactant self-assembly, reasonably accurate estimates of surfactant CMCs can be obtained with a fraction of the computational expense that would be required by using computer simulations alone.


Assuntos
Simulação por Computador , Modelos Químicos , Terpenos/química , Triterpenos/química , Água/química , Micelas , Triterpenos Pentacíclicos , Rotação , Soluções , Solventes/química , Tensoativos/química , Termodinâmica , Fatores de Tempo
3.
J Phys Chem B ; 112(6): 1634-40, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18198856

RESUMO

The widespread use of surfactant mixtures and surfactant/solubilizate mixtures in practical applications motivates the development of predictive theoretical approaches to improve fundamental understanding of the behavior of these complex self-assembling systems and to facilitate the design and optimization of new surfactant and surfactant/solubilizate mixtures. This paper is the first of two articles introducing a new computer simulation-free-energy/molecular thermodynamic (CS-FE/MT) model. The two articles explore the application of computer simulation free-energy methods to quantify the thermodynamics associated with mixed surfactant/cosurfactant and surfactant/solubilizate micelle formation in aqueous solution. In this paper (article 1 of the series), a theoretical approach is introduced to use computer simulation free-energy methods to compute the free-energy change associated with changing micelle composition (referred to as DeltaDeltaGi). In this approach, experimental critical micelle concentration (CMC) data, or a molecular thermodynamic model of micelle formation, is first used to evaluate the free energy associated with single (pure) surfactant micelle formation, g(form,single), in which the single surfactant micelle contains only surfactant A molecules. An iterative approach is proposed to combine the estimated value of gform,single with free-energy estimates of DeltaDeltaGi based on computer simulation to determine the optimal free energy of mixed micelle formation, the optimal micelle aggregation number and composition, and the optimal bulk solution composition. After introducing the CS-FE/MT modeling framework, a variety of free-energy methods are briefly reviewed, and the selection of the thermodynamic integration free-energy method is justified and selected to implement the CS-FE/MT model. An alchemical free-energy pathway is proposed to allow evaluation of the free-energy change associated with exchanging a surfactant A molecule with a surfactant/solubilizate B molecule through thermodynamic integration. In article 2 of this series, the implementation of the CS-FE/MT model to make DeltaDeltaGi free-energy predictions for several surfactant/solubilizate systems is discussed, and the predictions of the CS-FE/MT model are compared with the DeltaDeltaGi predictions of a molecular thermodynamic model fitted to relevant experimental data.


Assuntos
Micelas , Algoritmos , Simulação por Computador , Transferência de Energia , Modelos Químicos , Tensoativos , Termodinâmica
4.
J Phys Chem B ; 112(6): 1641-56, 2008 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-18198857

RESUMO

In this paper, the implementation of the CS-FE/MT model introduced in article 1 is discussed, and computer simulations are performed to evaluate the feasibility of the new theoretical approach. As discussed in article 1, making predictions of surfactant/solubilizate aqueous solution behavior using the CS-FE/MT model requires evaluation of DeltaDeltaG for multiple surfactant-to-solubilizate or surfactant-to-cosurfactant transformations. The central goal of this article is to evaluate the quantitative accuracy of the alchemical computer simulation method used in the CS-FE/MT modeling approach to predict DeltaDeltaG for a single surfactant-to-solubilizate or for a single surfactant-to-cosurfactant transformation. A hybrid single/dual topology approach was used to morph the ionic surfactant sodium dodecyl sulfate (SDS) into the ionic solubilizate ibuprofen (IBU), and a dual topology approach was used to morph the nonionic surfactant octyl glucoside (OG) into the nonionic solubilizate p-aminobenzoate (PAB). In addition, a single topology approach was used to morph the nonionic surfactant n-decyl dimethylphosphine oxide (C10PO) into the nonionic cosurfactant n-decyl methyl sulfoxide (C10SO), the nonionic surfactant octylsulfinyl ethanol (C8SE) into the nonionic cosurfactant decylsulfinyl ethanol (C10SE), and the nonionic surfactant n-decyl methyl sulfoxide (C10SO) into the nonionic cosurfactant n-octyl methyl sulfoxide (C8SO). Each DeltaDeltaG value was computed by using thermodynamic integration to determine the difference in free energy associated with (i) transforming a surfactant molecule of type A into a cosurfactant/solubilizate molecule of type B in a micellar environment (referred to as DeltaG2) and (ii) transforming a surfactant molecule of type A into a cosurfactant/solubilizate molecule of type B in aqueous solution (referred to as DeltaG1). CS-FE/MT model predictions of DeltaDeltaG for each alchemical transformation were made at a number of simulation conditions, including (i) different equilibration times at each value of the coupling parameter lambda, (ii) different data-gathering times at each lambda value, and (iii) simulation at a different number of lambda values. For the three surfactant-to-cosurfactant transformations considered here, the DeltaDeltaG values predicted by the CS-FE/MT model were compared with DeltaDeltaG values predicted by an accurate molecular thermodynamic (MT) model developed by fitting to experimental CMC data. Even after performing lengthy equilibration and data gathering at each lambda value, physically unrealistic values of DeltaDeltaG were predicted by the CS-FE/MT model for the transformations of SDS into IBU and of OG into PAB. However, more physically realistic DeltaDeltaG values were predicted for the transformation of C10PO into C10SO, and reasonable free-energy predictions were obtained for the transformations of C8SE into C10SE and C10SO into C8SO. Each of the surfactant-to-cosurfactant transformations considered here involved less extensive structural changes than the surfactant-to-solubilizate transformations. As computer power increases and as improvements are made to alchemical free-energy methods, it may become possible to apply the CS-FE/MT model to make accurate predictions of the free-energy changes associated with forming multicomponent surfactant and solubilizate micelles in aqueous solution where the chemical structures of the surfactants, cosurfactants, and solubilizates differ significantly.


Assuntos
Micelas , Algoritmos , Simulação por Computador , Transferência de Energia , Modelos Químicos , Modelos Moleculares , Conformação Molecular , Solventes , Tensoativos , Termodinâmica , Água/química
5.
J Phys Chem B ; 111(5): 1025-44, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17266257

RESUMO

Surfactant micellization and micellar solubilization in aqueous solution can be modeled using a molecular-thermodynamic (MT) theoretical approach; however, the implementation of MT theory requires an accurate identification of the portions of solutes (surfactants and solubilizates) that are hydrated and unhydrated in the micellar state. For simple solutes, such identification is comparatively straightforward using simple rules of thumb or group-contribution methods, but for more complex solutes, the hydration states in the micellar environment are unclear. Recently, a hybrid method was reported by these authors in which hydrated and unhydrated states are identified by atomistic simulation, with the resulting information being used to make MT predictions of micellization and micellar solubilization behavior. Although this hybrid method improves the accuracy of the MT approach for complex solutes with a minimum of computational expense, the limitation remains that individual atoms are modeled as being in only one of two states-head or tail-whereas in reality, there is a continuous spectrum of hydration states between these two limits. In the case of hydrophobic or amphiphilic solutes possessing more complex chemical structures, a new modeling approach is needed to (i) obtain quantitative information about changes in hydration that occur upon aggregate formation, (ii) quantify the hydrophobic driving force for self-assembly, and (iii) make predictions of micellization and micellar solubilization behavior. This article is the first in a series of articles introducing a new computer simulation-molecular thermodynamic (CS-MT) model that accomplishes objectives (i)-(iii) and enables prediction of micellization and micellar solubilization behaviors, which are infeasible to model directly using atomistic simulation. In this article (article 1 of the series), the CS-MT model is introduced and implemented to model simple oil aggregates of various shapes and sizes, and its predictions are compared to those of the traditional MT model. The CS-MT model is formulated to allow the prediction of the free-energy change associated with aggregate formation (gform) of solute aggregates of any shape and size by performing only two computer simulations-one of the solute in bulk water and the other of the solute in an aggregate of arbitrary shape and size. For the 15 oil systems modeled in this article, the average discrepancy between the predictions of the CS-MT model and those of the traditional MT model for gform is only 1.04%. In article 2, the CS-MT modeling approach is implemented to predict the micellization behavior of nonionic surfactants; in article 3, it is used to predict the micellization behavior of ionic and zwitterionic surfactants.


Assuntos
Simulação por Computador , Modelos Químicos , Termodinâmica , Interações Hidrofóbicas e Hidrofílicas , Estrutura Molecular , Soluções/química , Fatores de Tempo , Água/química
6.
J Phys Chem B ; 111(5): 1045-62, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17266258

RESUMO

In this article, the validity and accuracy of the CS-MT model is evaluated by using it to model the micellization behavior of seven nonionic surfactants in aqueous solution. Detailed information about the changes in hydration that occur upon the self-assembly of the surfactants into micelles was obtained through molecular dynamics simulation and subsequently used to compute the hydrophobic driving force for micelle formation. This information has also been used to test, for the first time, approximations made in traditional molecular-thermodynamic modeling. In the CS-MT model, two separate free-energy contributions to the hydrophobic driving force are computed. The first contribution, gdehydr, is the free-energy change associated with the dehydration of each surfactant group upon micelle formation. The second contribution, ghydr, is the change in the hydration free energy of each surfactant group upon micelle formation. To enable the straightforward estimation of gdehydr and ghydr in the case of nonionic surfactants, a number of simplifying approximations were made. Although the CS-MT model can be used to predict a variety of micellar solution properties including the micelle shape, size, and composition, the critical micelle concentration (CMC) was selected for prediction and comparison with experimental CMC data because it depends exponentially on the free energy of micelle formation, and as such, it provides a stringent quantitative test with which to evaluate the predictive accuracy of the CS-MT model. Reasonable agreement between the CMCs predicted by the CS-MT model and the experimental CMCs was obtained for octyl glucoside (OG), dodecyl maltoside (DM), octyl sulfinyl ethanol (OSE), decyl methyl sulfoxide (C10SO), decyl dimethyl phosphine oxide (C10PO), and decanoyl-n-methylglucamide (MEGA-10). For five of these surfactants, the CMCs predicted using the CS-MT model were closer to the experimental CMCs than the CMCs predicted using the traditional molecular-thermodynamic (MT) model. In addition, CMCs predicted for mixtures of C10PO and C10SO using the CS-MT model were significantly closer to the experimental CMCs than those predicted using the traditional MT model. For dodecyl octa(ethylene oxide) (C12E8), the CMC predicted by the CS-MT model was not in good agreement with the experimental CMC and with the CMC predicted by the traditional MT model, because the simplifying approximations made to estimate gdehydr and ghydr in this case were not sufficiently accurate. Consequently, we recommend that these simplifying approximations only be used for nonionic surfactants possessing relatively small, non-polymeric heads. For MEGA-10, which is the most structurally complex of the seven nonionic surfactants modeled, the CMC predicted by the CS-MT model (6.55 mM) was found to be in much closer agreement with the experimental CMC (5 mM) than the CMC predicted by the traditional MT model (43.3 mM). Our results suggest that, for complex, small-head nonionic surfactants where it is difficult to accurately quantify the hydrophobic driving force for micelle formation using the traditional MT modeling approach, the CS-MT model is capable of making reasonable predictions of aqueous micellization behavior.


Assuntos
Simulação por Computador , Modelos Químicos , Tensoativos/química , Termodinâmica , Interações Hidrofóbicas e Hidrofílicas , Micelas , Estrutura Molecular , Soluções/química , Fatores de Tempo , Água/química
7.
J Phys Chem B ; 111(5): 1063-75, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-17266259

RESUMO

In this article, the validity and accuracy of the CS-MT model introduced in article 1 for oil aggregates and in article 2 for nonionic surfactants is further evaluated by using it to model the micellization behavior of ionic and zwitterionic surfactants in aqueous solution. In the CS-MT model, two separate free-energy contributions to the hydrophobic driving force for micelle formation are computed using hydration data obtained from computer simulation: gdehydr, the free-energy change associated with dehydration, and ghydr, the change in the hydration free energy. To enable straightforward estimation of gdehydr and ghydr for ionic and zwitterionic surfactants, a number of simplifying approximations were made. Reasonable agreement between the CMCs predicted using the CS-MT model and the experimental CMCs was obtained for sodium dodecyl sulfate (SDS), dodecylphophocholine (DPC), cetyltrimethylammonium bromide (CTAB), two 3-hydroxy sulfonate surfactants (AOS-12 and AOS-16), and a homologous series of four DCNA bromide surfactants with a dimethylammonium head attached to a dodecyl alkyl tail and to an alkyl side chain of length CN, having the chemical formula C12H25CNH2N+1N(CH3)2Br, with N = 1 (DC1AB), 2 (DC2AB), 4 (DC4AB), and 6 (DC6AB). For six of these nine surfactants, the CMCs predicted using the CS-MT model are closer to the experimental CMCs than the CMCs predicted using the traditional molecular-thermodynamic (MT) model. For DC2AB, DC4AB, and DC6AB, which are the most structurally complex of the ionic surfactants modeled, the CMCs predicted using the CS-MT model are in remarkably good agreement with the experimental CMCs, and the CMCs predicted using the traditional MT model are quite inaccurate. Our results suggest that the CS-MT model accurately quantifies the hydrophobic driving force for micelle formation for ionic and zwitterionic surfactants in aqueous solution. For complex ionic and zwitterionic surfactants where it is difficult to accurately quantify the hydrophobic driving force for micelle formation using the traditional MT modeling approach, the CS-MT model represents a very promising alternative.


Assuntos
Simulação por Computador , Modelos Químicos , Tensoativos/química , Termodinâmica , Interações Hidrofóbicas e Hidrofílicas , Micelas , Estrutura Molecular , Soluções/química , Fatores de Tempo , Água/química
8.
J Phys Chem B ; 110(39): 19393-405, 2006 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-17004797

RESUMO

Constant surface tension (NgammaT) and constant volume (NVT) molecular dynamics simulations have been conducted on a series of bolaamphiphilic alpha,varpi-(diammonium disulfato)poly(fluorooxetane)s and on a typical "long-chain" anionic fluorosurfactant used to improve the flow-and-leveling characteristics of aqueous coatings, to compare their behavior at a water/air interface. Recent research has shown that the poly(fluorooxetane) surfactants considered in this paper could serve as an effective substitute for traditional fluorosurfactants used in flow-and-leveling applications.(1) From molecular dynamics simulation, we have determined the saturated interfacial area per surfactant, interfacial area per surfactant as a function of surface tension, density profiles, the degree of hydration for various atoms in each surfactant, the degree of counterion binding, and order parameters. Our results for saturated interfacial area per surfactant molecule are greater than what has been obtained by other researchers through parametric fitting of interfacial area from experimental surface tension data using the Davies isotherm. Possible explanations for this difference are discussed. The low interfacial areas occupied by each poly(fluorooxetane) at the water/air interface are the result of their ability to adopt a "looped" conformation, in which the carbon and oxygen backbone of each surfactant and the attached perfluoroalkyl chains are forced into the air phase. A geometrically defined penetration parameter was calculated from the density profiles, which reveals that each poly(fluorooxetane) surfactant is more effective at separating the air and water phases than the "long-chain" anionic fluorosurfactant. The degree of hydration measured for different atoms in poly(fluorooxetane) during simulation confirms that a "looped" conformation is adopted in which the surfactant backbone and the perfluoroalkyl chains are lifted away from the water surface. Calculation of order parameters revealed a much lower degree of ordering for the perfluoroalkyl side chains in each bolaamphiphile than in the "long chain" anionic fluorosurfactant. When viewed in the context of the penetration parameter analysis, the density profiles and hydration data suggest why each poly(fluorooxetane) is capable of significantly reducing surface tension when other fluorosurfactants with similarly short perfluoroalkyl moieties provide inadequate surface tension reduction for practical flow-and-leveling applications.

9.
Langmuir ; 22(4): 1500-13, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16460068

RESUMO

Molecular-thermodynamic descriptions of micellization in aqueous media can be utilized to model the self-assembly of surfactants possessing relatively simple chemical structures, where it is possible to identify a priori what equilibrium position they will adopt in the resulting micellar aggregate. For such chemical structures, the portion of the surfactant molecule that is expected to be exposed to water upon aggregate self-assembly can be identified and used as an input to the molecular-thermodynamic description. Unfortunately, for many surfactants possessing more complex chemical structures, it is not clear a priori how they will orient themselves within a micellar aggregate. In this paper, we present a computational approach to identify what portions of a surfactant molecule are hydrated in a micellar environment through the use of molecular dynamics simulations of such molecules at an oil/water interface (modeling the micelle core/water interface). The local environment of each surfactant segment is determined by counting the number of contacts of each segment with the water and oil molecules. After identifying the hydrated and the unhydrated segments of the surfactant molecule, molecular-thermodynamic modeling can be performed to predict: (i) the free-energy change associated with forming a micellar aggregate, (ii) the critical micelle concentration (CMC), and (iii) the optimal shape and size of the micellar aggregate. The computer simulation results were found to be sensitive to the atomic charge parameters utilized during the simulation runs. Two different methods of assigning atomic charges were tested, and the computer simulation and molecular-thermodynamic modeling results obtained using both sets of atomic charges are presented and compared. The combined computer simulation/molecular-thermodynamic modeling approach presented here is validated first by implementing it in the case of anionic (sodium dodecyl sulfate, SDS), cationic (cetyltrimethylammonium bromide, CTAB), zwitterionic (dodecylphosphocholine, DPC), and nonionic (dodecyl poly(ethylene oxide), C12E8) surfactants possessing relatively simple chemical structures and verifying that good predictions of CMCs and micelle aggregation numbers are obtained. In the case of C12E8, the challenges and limitations associated with simulating a single, polymeric E8 moiety at the oil/water interface to model its behavior at the micelle/water interface are discussed. Subsequently, the combined modeling approach is implemented in the case of the anionic surfactant 3-hydroxy sulfonate (AOS) and of the nonionic surfactant decanoyl-n-methylglucamide (MEGA-10), which possess significantly more complex chemical structures. The good predictions obtained for these two surfactants indicate that the combined computer simulation/molecular-thermodynamic modeling approach presented here extends the range of applicability of molecular-thermodynamic theory to allow modeling of the micellization behavior of surfactants possessing more complex chemical structures.


Assuntos
Micelas , Modelos Químicos , Tensoativos/química
10.
Langmuir ; 22(4): 1514-25, 2006 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-16460069

RESUMO

Surfactants can be used to increase the solubility of poorly soluble drugs in water and to increase drug bioavailability. In this article, the aqueous solubilization of the nonsteroidal, antiinflammatory drug ibuprofen is studied experimentally and theoretically in micellar solutions of anionic (sodium dodecyl sulfate, SDS), cationic (dodecyltrimethylammonium bromide, DTAB), and nonionic (dodecyl octa(ethylene oxide), C12E8) surfactants possessing the same hydrocarbon "tail" length but differing in their hydrophilic headgroups. We find that, for these three surfactants, the aqueous solubility of ibuprofen increases linearly with increasing surfactant concentration. In particular, we observed a 16-fold increase in the solubility of ibuprofen relative to that in the aqueous buffer upon the addition of 80 mM DTAB and 80 mM C12E8 but only a 5.5-fold solubility increase upon the addition of 80 mM SDS. The highest value of the molar solubilization capacity (chi) was obtained for DTAB (chi = 0.97), followed by C12E8 (chi = 0.72) and finally by SDS (chi = 0.23). A recently developed computer simulation/molecular-thermodynamic modeling approach was extended to predict theoretically the solubilization behavior of the three ibuprofen/surfactant mixtures considered. In this modeling approach, molecular-dynamics (MD) simulations were used to identify which portions of ibuprofen are exposed to water (hydrated) in a micellar environment by simulating a single ibuprofen molecule at an oil/water interface (modeling the micelle core/water interface). On the basis of this input, molecular-thermodynamic modeling was then implemented to predict (i) the micellar composition as a function of surfactant concentration, (ii) the aqueous solubility of ibuprofen as a function of surfactant concentration, and (iii) the molar solubilization capacity (chi). Our theoretical results on the solubility of ibuprofen in aqueous SDS and C12E8 surfactant solutions are in good agreement with the experimental data. The ibuprofen solubility in aqueous DTAB solutions was somewhat overpredicted because of challenges associated with accurately modeling the strong electrostatic interactions between the anionic ibuprofen and the cationic DTAB. Our results indicate that computer simulations of ibuprofen at a flat oil/water interface can be used to obtain accurate information about the hydrated and the unhydrated portions of ibuprofen in a micellar environment. This information can then be used as input to a molecular-thermodynamic model of self-assembly to successfully predict the aqueous solubilization behavior of ibuprofen in the three surfactant systems studied.


Assuntos
Ibuprofeno/química , Micelas , Modelos Químicos , Tensoativos/química , Solubilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA