Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 18(10): e1010603, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36269761

RESUMO

Metaproteomics based on high-throughput tandem mass spectrometry (MS/MS) plays a crucial role in characterizing microbiome functions. The acquired MS/MS data is searched against a protein sequence database to identify peptides, which are then used to infer a list of proteins present in a metaproteome sample. While the problem of protein inference has been well-studied for proteomics of single organisms, it remains a major challenge for metaproteomics of complex microbial communities because of the large number of degenerate peptides shared among homologous proteins in different organisms. This challenge calls for improved discrimination of true protein identifications from false protein identifications given a set of unique and degenerate peptides identified in metaproteomics. MetaLP was developed here for protein inference in metaproteomics using an integrative linear programming method. Taxonomic abundance information extracted from metagenomics shotgun sequencing or 16s rRNA gene amplicon sequencing, was incorporated as prior information in MetaLP. Benchmarking with mock, human gut, soil, and marine microbial communities demonstrated significantly higher numbers of protein identifications by MetaLP than ProteinLP, PeptideProphet, DeepPep, PIPQ, and Sipros Ensemble. In conclusion, MetaLP could substantially improve protein inference for complex metaproteomes by incorporating taxonomic abundance information in a linear programming model.


Assuntos
Programação Linear , Espectrometria de Massas em Tandem , Humanos , RNA Ribossômico 16S/genética , Proteínas/química , Peptídeos/química
2.
J Proteomics ; 247: 104316, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246788

RESUMO

Metaproteomics is becoming widely used in microbiome research for gaining insights into the functional state of the microbial community. Current metaproteomics studies are generally based on high-throughput tandem mass spectrometry (MS/MS) coupled with liquid chromatography. In this paper, we proposed a deep-learning-based algorithm, named DeepFilter, for improving peptide identifications from a collection of tandem mass spectra. The key advantage of the DeepFilter is that it does not need ad hoc training or fine-tuning as in existing filtering tools. DeepFilter is freely available under the GNU GPL license at https://github.com/Biocomputing-Research-Group/DeepFilter. SIGNIFICANCE: The identification of peptides and proteins from MS data involves the computational procedure of searching MS/MS spectra against a predefined protein sequence database and assigning top-scored peptides to spectra. Existing computational tools are still far from being able to extract all the information out of MS/MS data sets acquired from metaproteome samples. Systematical experiment results demonstrate that the DeepFilter identified up to 12% and 9% more peptide-spectrum-matches and proteins, respectively, compared with existing filtering algorithms, including Percolator, Q-ranker, PeptideProphet, and iProphet, on marine and soil microbial metaproteome samples with false discovery rate at 1%. The taxonomic analysis shows that DeepFilter found up to 7%, 10%, and 14% more species from marine, soil, and human gut samples compared with existing filtering algorithms. Therefore, DeepFilter was believed to generalize properly to new, previously unseen peptide-spectrum-matches and can be readily applied in peptide identification from metaproteomics data.


Assuntos
Aprendizado Profundo , Espectrometria de Massas em Tandem , Algoritmos , Bases de Dados de Proteínas , Peptídeos , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA