Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
1.
Transl Psychiatry ; 14(1): 30, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38233401

RESUMO

Adolescence is marked by the maturation of systems involved in emotional regulation and by an increased risk for internalizing disorders (anxiety/depression), especially in females. Hypothalamic-pituitary-adrenal (HPA)-axis function and redox homeostasis (balance between reactive oxygen species and antioxidants) have both been associated with internalizing disorders and may represent critical factors for the development of brain networks of emotional regulation. However, sex-specific interactions between these factors and internalizing symptoms and their link with brain maturation remain unexplored. We investigated in a cohort of adolescents aged 13-15 from the general population (n = 69) whether sex-differences in internalizing symptoms were associated with the glutathione (GSH)-redox cycle homeostasis and HPA-axis function and if these parameters were associated with brain white matter microstructure development. Female adolescents displayed higher levels of internalizing symptoms, GSH-peroxidase (GPx) activity and cortisol/11-deoxycortisol ratio than males. There was a strong correlation between GPx and GSH-reductase (Gred) activities in females only. The cortisol/11-deoxycortisol ratio, related to the HPA-axis activity, was associated with internalizing symptoms in both sexes, whereas GPx activity was associated with internalizing symptoms in females specifically. The cortisol/11-deoxycortisol ratio mediated sex-differences in internalizing symptoms and the association between anxiety and GPx activity in females specifically. In females, GPx activity was positively associated with generalized fractional anisotropy in widespread white matter brain regions. We found that higher levels of internalizing symptoms in female adolescents than in males relate to sex-differences in HPA-axis function. In females, our results suggest an important interplay between HPA-axis function and GSH-homeostasis, a parameter strongly associated with brain white matter microstructure.


Assuntos
Hidrocortisona , Substância Branca , Humanos , Masculino , Adolescente , Feminino , Substância Branca/diagnóstico por imagem , Cortodoxona , Encéfalo/diagnóstico por imagem , Oxirredução , Sistema Hipotálamo-Hipofisário/fisiologia , Sistema Hipófise-Suprarrenal/fisiologia , Antioxidantes , Estresse Psicológico
2.
Transl Psychiatry ; 13(1): 275, 2023 08 05.
Artigo em Inglês | MEDLINE | ID: mdl-37543592

RESUMO

Defects in essential metabolic regulation for energy supply, increased oxidative stress promoting excitatory/inhibitory imbalance and phospholipid membrane dysfunction have been implicated in the pathophysiology of schizophrenia (SZ). The knowledge about the developmental trajectory of these key pathophysiological components and their interplay is important to develop new preventive and treatment strategies. However, this assertion is so far limited. To investigate the developmental regulations of these key components in the brain, we assessed, for the first time, in vivo redox state from the oxidized (NAD+) and reduced (NADH) form of Nicotinamide Adenine Dinucleotide (NAD), energy and membrane metabolites, inhibitory and excitatory neurotransmitters by 31P and 1H MRS during the neurodevelopment of an SZ animal model with genetically compromised glutathione synthesis (gclm-KO mice). When compared to age-matched wild type (WT), an increase in NAD+/NADH redox ratio was found in gclm-KO mice until early adulthood, followed by a decrease in full adults as observed in patients. Especially, in early postnatal life (P20, corresponding to childhood), levels of several metabolites were altered in gclm-KO mice, including NAD+, NAD+/NADH, ATP, and glutamine + glutamate, suggesting an interactive compensation for redox dysregulation between NAD, energy metabolism, and neurotransmission. The identified temporal neurometabolic regulations under deficits in redox regulation provide insights into preventive treatment targets for at-risk individuals, and other neurodevelopmental disorders involving oxidative stress and energetic dysfunction.


Assuntos
Antioxidantes , Esquizofrenia , Camundongos , Animais , NAD/metabolismo , Esquizofrenia/metabolismo , Oxirredução , Metabolismo Energético , Modelos Animais de Doenças
3.
Schizophr Bull ; 49(1): 196-207, 2023 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-36065156

RESUMO

BACKGROUND AND HYPOTHESIS: Although the thalamus has a central role in schizophrenia pathophysiology, contributing to sensory, cognitive, and sleep alterations, the nature and dynamics of the alterations occurring within this structure remain largely elusive. Using a multimodal magnetic resonance imaging (MRI) approach, we examined whether anomalies: (1) differ across thalamic subregions/nuclei, (2) are already present in the early phase of psychosis (EP), and (3) worsen in chronic schizophrenia (SCHZ). STUDY DESIGN: T1-weighted and diffusion-weighted images were analyzed to estimate gray matter concentration (GMC) and microstructural parameters obtained from the spherical mean technique (intra-neurite volume fraction [VFINTRA)], intra-neurite diffusivity [DIFFINTRA], extra-neurite mean diffusivity [MDEXTRA], extra-neurite transversal diffusivity [TDEXTRA]) within 7 thalamic subregions. RESULTS: Compared to age-matched controls, the thalamus of EP patients displays previously unreported widespread microstructural alterations (VFINTRA decrease, TDEXTRA increase) that are associated with similar alterations in the whole brain white matter, suggesting altered integrity of white matter fiber tracts in the thalamus. In both patient groups, we also observed more localized and heterogenous changes (either GMC decrease, MDEXTRA increase, or DIFFINTRA decrease) in mediodorsal, posterior, and ventral anterior parts of the thalamus in both patient groups, suggesting that the nature of the alterations varies across subregions. GMC and DIFFINTRA in the whole thalamus correlate with global functioning, while DIFFINTRA in the subregion encompassing the medial pulvinar is significantly associated with negative symptoms in SCHZ. CONCLUSION: Our data reveals both widespread and more localized thalamic anomalies that are already present in the early phase of psychosis.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Humanos , Esquizofrenia/patologia , Tálamo/diagnóstico por imagem , Tálamo/patologia , Transtornos Psicóticos/diagnóstico por imagem , Transtornos Psicóticos/patologia , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética
4.
Transl Psychiatry ; 12(1): 413, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-36163247

RESUMO

Traumatic events during childhood/early adolescence can cause long-lasting physiological and behavioral changes with increasing risk for psychiatric conditions including psychosis. Genetic factors and trauma (and their type, degree of repetition, time of occurrence) are believed to influence how traumatic experiences affect an individual. Here, we compared long-lasting behavioral effects of repeated social defeat stress (SD) applied during either peripuberty or late adolescence in adult male WT and Gclm-KO mice, a model of redox dysregulation relevant to schizophrenia. As SD disrupts redox homeostasis and causes oxidative stress, we hypothesized that KO mice would be particularly vulnerable to such stress. We first found that peripubertal and late adolescent SD led to different behavioral outcomes. Peripubertal SD induced anxiety-like behavior in anxiogenic environments, potentiated startle reflex, and increased sensitivity to the NMDA-receptor antagonist, MK-801. In contrast, late adolescent SD led to increased exploration in novel environments. Second, the long-lasting impact of peripubertal but not late adolescent SD differed in KO and WT mice. Peripubertal SD increased anxiety-like behavior in anxiogenic environments and MK-801-sensitivity mostly in KO mice, while it increased startle reflex in WT mice. These suggest that a redox dysregulation during peripuberty interacts with SD to remodel the trajectory of brain maturation, but does not play a significant role during later SD. As peripubertal SD induced persisting anxiety- and fear-related behaviors in male mice, we then investigated anxiety in a cohort of 89 early psychosis male patients for whom we had information about past abuse and clinical assessment during the first year of psychosis. We found that a first exposure to physical/sexual abuse (analogous to SD) before age 12, but not after, was associated with higher anxiety at 6-12 months after psychosis onset. This supports that childhood/peripuberty is a vulnerable period during which physical/sexual abuse in males has wide and long-lasting consequences.


Assuntos
Maleato de Dizocilpina , Derrota Social , Animais , Humanos , Masculino , Camundongos , N-Metilaspartato , Oxirredução , Estresse Psicológico/psicologia
5.
Mol Psychiatry ; 27(11): 4394-4406, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35902628

RESUMO

Schizophrenia is associated with alterations of sensory integration, cognitive processing and both sleep architecture and sleep oscillations in mouse models and human subjects, possibly through changes in thalamocortical dynamics. Oxidative stress (OxS) damage, including inflammation and the impairment of fast-spiking gamma-aminobutyric acid neurons have been hypothesized as a potential mechanism responsible for the onset and development of schizophrenia. Yet, the link between OxS and perturbation of thalamocortical dynamics and sleep remains unclear. Here, we sought to investigate the effects of OxS on sleep regulation by characterizing the dynamics of thalamocortical networks across sleep-wake states in a mouse model with a genetic deletion of the modifier subunit of glutamate-cysteine ligase (Gclm knockout, KO) using high-density electrophysiology in freely-moving mice. We found that Gcml KO mice exhibited a fragmented sleep architecture and impaired sleep homeostasis responses as revealed by the increased NREM sleep latencies, decreased slow-wave activities and spindle rate after sleep deprivation. These changes were associated with altered bursting activity and firing dynamics of neurons from the thalamic reticularis nucleus, anterior cingulate and anterodorsal thalamus. Administration of N-acetylcysteine (NAC), a clinically relevant antioxidant, rescued the sleep fragmentation and spindle rate through a renormalization of local neuronal dynamics in Gclm KO mice. Collectively, these findings provide novel evidence for a link between OxS and the deficits of frontal TC network dynamics as a possible mechanism underlying sleep abnormalities and impaired homeostatic responses observed in schizophrenia.


Assuntos
Glutamato-Cisteína Ligase , Sono , Camundongos , Humanos , Animais , Sono/fisiologia , Tálamo , Núcleos Talâmicos , Estresse Oxidativo , Córtex Cerebral
8.
Mol Psychiatry ; 27(4): 2042-2051, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35079122

RESUMO

Impairment of parvalbumin interneurons induced by oxidative stress (OxS) is a "hub" on which converge several genetic and environmental risk factors associated with schizophrenia. In patients, this could be a mechanism leading to anomalies of the thalamic reticular nucleus (TRN) whose major neuronal population expresses parvalbumin. The TRN shapes the information flow within thalamo-cortical circuits. The low-threshold voltage-gated T-type Ca2+ (T-Ca2+) channels (CaV3.2, CaV3.3) contribute to the excitability and rhythmic bursting of TRN neurons which mediates cortical sleep spindles, known to be affected in schizophrenia. Here, we investigated the impact of OxS during postnatal development and adulthood on firing properties and T-Ca2+ channels of TRN neurons. In Gclm knock-out (KO) mice, which display GSH deficit and OxS in TRN, we found a reduction of T-Ca2+ current density in adulthood, but not at peripuberty. In KO adults, the decreased T-Ca2+ currents were accompanied with a decrease of CaV3.3 expression, and a shift towards more hyperpolarized membrane potentials for burst firing leading to less prominent bursting profile. In young KO mice, an early-life oxidative challenge precipitated the hypofunction of T-Ca2+ channels. This was prevented by a treatment with N-acetylcysteine. The concomitant presence of OxS and hypofunction of T-Ca2+ channels were also observed in TRN of a neurodevelopmental model relevant to psychosis (MAM mice). Collectively, these data indicate that OxS-mediated T-Ca2+ hypofunction in TRN begins early in life. This also points to T-Ca2+ channels as one target of antioxidant-based treatments aiming to mitigate abnormal thalamo-cortical communication and pathogenesis of schizophrenia.


Assuntos
Esquizofrenia , Adulto , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Knockout , Estresse Oxidativo , Parvalbuminas/metabolismo , Núcleos Talâmicos
9.
Mol Psychiatry ; 27(2): 1192-1204, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34686767

RESUMO

Early detection and intervention in schizophrenia requires mechanism-based biomarkers that capture neural circuitry dysfunction, allowing better patient stratification, monitoring of disease progression and treatment. In prefrontal cortex and blood of redox dysregulated mice (Gclm-KO ± GBR), oxidative stress induces miR-137 upregulation, leading to decreased COX6A2 and mitophagy markers (NIX, Fundc1, and LC3B) and to accumulation of damaged mitochondria, further exacerbating oxidative stress and parvalbumin interneurons (PVI) impairment. MitoQ, a mitochondria-targeted antioxidant, rescued all these processes. Translating to early psychosis patients (EPP), blood exosomal miR-137 increases and COX6A2 decreases, combined with mitophagy markers alterations, suggest that observations made centrally and peripherally in animal model were reflected in patients' blood. Higher exosomal miR-137 and lower COX6A2 levels were associated with a reduction of ASSR gamma oscillations in EEG. As ASSR requires proper PVI-related networks, alterations in miR-137/COX6A2 plasma exosome levels may represent a proxy marker of PVI cortical microcircuit impairment. EPP can be stratified in two subgroups: (a) a patients' group with mitochondrial dysfunction "Psy-D", having high miR-137 and low COX6A2 levels in exosomes, and (b) a "Psy-ND" subgroup with no/low mitochondrial impairment, including patients having miR-137 and COX6A2 levels in the range of controls. Psy-D patients exhibited more impaired ASSR responses in association with worse psychopathological status, neurocognitive performance, and global and social functioning, suggesting that impairment of PVI mitochondria leads to more severe disease profiles. This stratification would allow, with high selectivity and specificity, the selection of patients for treatments targeting brain mitochondria dysregulation and capture the clinical and functional efficacy of future clinical trials.


Assuntos
MicroRNAs , Esquizofrenia , Animais , Biomarcadores/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Humanos , Interneurônios/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , MicroRNAs/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Musculares/metabolismo , Parvalbuminas/metabolismo , Esquizofrenia/metabolismo
10.
Mol Psychiatry ; 27(4): 1886-1897, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34759358

RESUMO

A growing body of evidence has emerged demonstrating a pathological link between oxidative stress and schizophrenia. This evidence identifies oxidative stress as a convergence point or "central hub" for schizophrenia genetic and environmental risk factors. Here we review the existing experimental and translational research pinpointing the complex dynamics of oxidative stress mechanisms and their modulation in relation to schizophrenia pathophysiology. We focus on evidence supporting the crucial role of either redox dysregulation, N-methyl-D-aspartate receptor hypofunction, neuroinflammation or mitochondria bioenergetics dysfunction, initiating "vicious circles" centered on oxidative stress during neurodevelopment. These processes would amplify one another in positive feed-forward loops, leading to persistent impairments of the maturation and function of local parvalbumin-GABAergic neurons microcircuits and myelinated fibers of long-range macrocircuitry. This is at the basis of neural circuit synchronization impairments and cognitive, emotional, social and sensory deficits characteristic of schizophrenia. Potential therapeutic approaches that aim at breaking these different vicious circles represent promising strategies for timely and safe interventions. In order to improve early detection and increase the signal-to-noise ratio for adjunctive trials of antioxidant, anti-inflammatory and NMDAR modulator drugs, a reverse translation of validated circuitry approach is needed. The above presented processes allow to identify mechanism based biomarkers guiding stratification of homogenous patients groups and target engagement required for successful clinical trials, paving the way towards precision medicine in psychiatry.


Assuntos
Esquizofrenia , Neurônios GABAérgicos/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Parvalbuminas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Esquizofrenia/genética
11.
Schizophr Bull Open ; 2(1): sgab033, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34901867

RESUMO

Processing speed (PS) impairment is one of the most severe and common cognitive deficits in schizophrenia. Previous studies have reported correlations between PS and white matter diffusion properties, including fractional anisotropy (FA), in several fiber bundles in schizophrenia, suggesting that white matter alterations could underpin decreased PS. In schizophrenia, white matter alterations are most prevalent within inter-hub connections of the rich club. However, the spatial and topological characteristics of this association between PS and FA have not been investigated in patients. In this context, we tested whether structural connections comprising the rich club network would underlie PS impairment in 298 patients with schizophrenia or schizoaffective disorder and 190 healthy controls from the Australian Schizophrenia Research Bank. PS, measured using the digit symbol coding task, was largely (Cohen's d = 1.33) and significantly (P < .001) reduced in the patient group when compared with healthy controls. Significant associations between PS and FA were widespread in the patient group, involving all cerebral lobes. FA was not associated with other cognitive measures of phonological fluency and verbal working memory in patients, suggesting specificity to PS. A topological analysis revealed that despite being spatially widespread, associations between PS and FA were over-represented among connections forming the rich club network. These findings highlight the need to consider brain network topology when investigating high-order cognitive functions that may be spatially distributed among several brain regions. They also reinforce the evidence that brain hubs and their interconnections may be particularly vulnerable parts of the brain in schizophrenia.

12.
Schizophr Bull ; 47(6): 1782-1794, 2021 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-34080015

RESUMO

Research in schizophrenia (SZ) emphasizes the need for new therapeutic approaches based on antioxidant/anti-inflammatory compounds and psycho-social therapy. A hallmark of SZ is a dysfunction of parvalbumin-expressing fast-spiking interneurons (PVI), which are essential for neuronal synchrony during sensory/cognitive processing. Oxidative stress and inflammation during early brain development, as observed in SZ, affect PVI maturation. We compared the efficacy of N-acetyl-cysteine (NAC) and/or environmental enrichment (EE) provided during juvenile and/or adolescent periods in rescuing PVI impairments induced by an additional oxidative insult during childhood in a transgenic mouse model with gluthation deficit (Gclm KO), relevant for SZ. We tested whether this rescue was promoted by the inhibition of MMP9/RAGE mechanism, both in the mouse model and in early psychosis (EP) patients, enrolled in a double-blind, randomized, placebo-controlled clinical trial of NAC supplementation for 6 months. We show that a sequential combination of NAC+EE applied after an early-life oxidative insult recovers integrity and function of PVI network in adult Gclm KO, via the inhibition of MMP9/RAGE. Six-month NAC treatment in EP patients reduces plasma sRAGE in association with increased prefrontal GABA, improvement of cognition and clinical symptoms, suggesting similar neuroprotective mechanisms. The sequential combination of NAC+EE reverses long-lasting effects of an early oxidative insult on PVI/perineuronal net (PNN) through the inhibition of MMP9/RAGE mechanism. In analogy, patients vulnerable to early-life insults could benefit from a combined pharmacological and psycho-social therapy.


Assuntos
Acetilcisteína/farmacologia , Terapia por Exercício , Interneurônios/efeitos dos fármacos , Metaloproteinase 9 da Matriz/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Transtornos Psicóticos/terapia , Receptor para Produtos Finais de Glicação Avançada/efeitos dos fármacos , Adulto , Animais , Terapia Combinada , Modelos Animais de Doenças , Feminino , Glutamato-Cisteína Ligase/deficiência , Humanos , Interneurônios/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Parvalbuminas/metabolismo , Transtornos Psicóticos/tratamento farmacológico , Transtornos Psicóticos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Pesquisa Translacional Biomédica
13.
Nat Neurosci ; 23(12): 1567-1579, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33169029

RESUMO

Alzheimer's disease (AD) is characterized by the accumulation of the tau protein in neurons, neurodegeneration and memory loss. However, the role of non-neuronal cells in this chain of events remains unclear. In the present study, we found accumulation of tau in hilar astrocytes of the dentate gyrus of individuals with AD. In mice, the overexpression of 3R tau specifically in hilar astrocytes of the dentate gyrus altered mitochondrial dynamics and function. In turn, these changes led to a reduction of adult neurogenesis, parvalbumin-expressing neurons, inhibitory synapses and hilar gamma oscillations, which were accompanied by impaired spatial memory performances. Together, these results indicate that the loss of tau homeostasis in hilar astrocytes of the dentate gyrus is sufficient to induce AD-like symptoms, through the impairment of the neuronal network. These results are important for our understanding of disease mechanisms and underline the crucial role of astrocytes in hippocampal function.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/psicologia , Astrócitos/metabolismo , Giro Denteado/metabolismo , Transtornos da Memória/metabolismo , Transtornos da Memória/psicologia , Proteínas tau/metabolismo , Doença de Alzheimer/complicações , Animais , Animais Geneticamente Modificados , Feminino , Humanos , Transtornos da Memória/etiologia , Camundongos , Camundongos Endogâmicos C57BL , Rede Nervosa/metabolismo , Neurogênese , Parvalbuminas/metabolismo , Gravidez , Desempenho Psicomotor , Ratos , Memória Espacial , Sinapses/fisiologia
15.
Hum Brain Mapp ; 41(14): 4041-4061, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33448519

RESUMO

The structural complexity of the thalamus, due to its mixed composition of gray and white matter, make it challenging to disjoint and quantify each tissue contribution to the thalamic anatomy. This work promotes the use of partial-volume-based over probabilistic-based tissue segmentation approaches to better capture thalamic gray matter differences between patients at different stages of psychosis (early and chronic) and healthy controls. The study was performed on a cohort of 23 patients with schizophrenia, 41 with early psychosis and 69 age and sex-matched healthy subjects. Six tissue segmentation approaches were employed to obtain the gray matter concentration/probability images. The statistical tests were applied at three different anatomical scales: whole thalamus, thalamic subregions and voxel-wise. The results suggest that the partial volume model estimation of gray matter is more sensitive to detect atrophies within the thalamus of patients with psychosis. However all the methods detected gray matter deficit in the pulvinar, particularly in early stages of psychosis. This study demonstrates also that the gray matter decrease varies nonlinearly with age and between nuclei. While a gray matter loss was found in the pulvinar of patients in both stages of psychosis, reduced gray matter in the mediodorsal was only observed in early psychosis subjects. Finally, our analyses point to alterations in a sub-region comprising the lateral posterior and ventral posterior nuclei. The obtained results reinforce the hypothesis that thalamic gray matter assessment is more reliable when the tissues segmentation method takes into account the partial volume effect.


Assuntos
Substância Cinzenta/patologia , Interpretação de Imagem Assistida por Computador/métodos , Neuroimagem/métodos , Transtornos Psicóticos/patologia , Esquizofrenia/patologia , Núcleos Talâmicos/patologia , Adulto , Feminino , Substância Cinzenta/diagnóstico por imagem , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino , Transtornos Psicóticos/diagnóstico por imagem , Esquizofrenia/diagnóstico por imagem , Núcleos Talâmicos/diagnóstico por imagem , Fatores de Tempo , Adulto Jovem
16.
Schizophr Res ; 226: 147-157, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-31147286

RESUMO

Identification of reliable biomarkers of prognosis in subjects with high risk to psychosis is an essential step to improve care and treatment of this population of help-seekers. Longitudinal studies highlight some clinical criteria, cognitive deficits, patterns of gray matter alterations and profiles of blood metabolites that provide some levels of prediction regarding the conversion to psychosis. Further effort is warranted to validate these results and implement these types of approaches in clinical settings. Such biomarkers may however fall short in entangling the biological mechanisms underlying the disease progression, an essential step in the development of novel therapies. Circuit-based approaches, which map on well-identified cerebral functions, could meet these needs. Converging evidence indicates that thalamus abnormalities are central to schizophrenia pathophysiology, contributing to clinical symptoms, cognitive and sensory deficits. This review highlights the various thalamus-related anomalies reported in individuals with genetic risks and in the different phases of the disorder, from prodromal to chronic stages. Several anomalies are potent endophenotypes, while others exist in clinical high-risk subjects and worsen in those who convert to full psychosis. Aberrant functional coupling between thalamus and cortex, low glutamate content and readouts from resting EEG carry predictive values for transition to psychosis or functional outcome. In this context, thalamus-related anomalies represent a valuable entry point to tackle circuit-based alterations associated with the emergence of psychosis. This review also proposes that longitudinal surveys of neuroimaging, EEG readouts associated with circuits encompassing the mediodorsal, pulvinar in high-risk individuals could unveil biological mechanisms contributing to this psychiatric disorder.


Assuntos
Transtornos Psicóticos , Esquizofrenia , Biomarcadores , Humanos , Imageamento por Ressonância Magnética , Tálamo/diagnóstico por imagem
17.
Mol Psychiatry ; 25(11): 2889-2904, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-30911107

RESUMO

Various mechanisms involved in schizophrenia pathophysiology, such as dopamine dysregulation, glutamate/NMDA receptor dysfunction, neuroinflammation or redox imbalance, all appear to converge towards an oxidative stress "hub" affecting parvalbumine interneurones (PVI) and their perineuronal nets (PNN) (Lancet Psychiatry. 2015;2:258-70); (Nat Rev Neurosci. 2016;17:125-34). We aim to investigate underlying mechanisms linking oxidative stress with neuroinflammatory and their long-lasting harmful consequences. In a transgenic mouse of redox dysregulation carrying a permanent deficit of glutathione synthesis (gclm-/-), the anterior cingulate cortex presented early in the development increased oxidative stress which was prevented by the antioxidant N-acetylcysteine (Eur J Neurosci. 2000;12:3721-8). This oxidative stress induced microglia activation and redox-sensitive matrix metalloproteinase 9 (MMP9) stimulation, leading to the receptor for advanced glycation end-products (RAGE) shedding into soluble and nuclear forms, and subsequently to nuclear factor-kB (NF-kB) activation and secretion of various cytokines. Blocking MMP9 activation prevented this sequence of alterations and rescued the normal maturation of PVI/PNN, even if performed after an additional insult that exacerbated the long term PVI/PNN impairments. MMP9 inhibition thus appears to be able to interrupt the vicious circle that maintains the long-lasting deleterious effects of the reciprocal interaction between oxidative stress and neuroinflammation, impacting on PVI/PNN integrity. Translation of these experimental findings to first episode patients revealed an increase in plasma soluble RAGE relative to healthy controls. This increase was associated with low prefrontal GABA levels, potentially predicting a central inhibitory/excitatory imbalance linked to RAGE shedding. This study paves the way for mechanistically related biomarkers needed for early intervention and MMP9/RAGE pathway modulation may lead to promising drug targets.


Assuntos
Inflamação/metabolismo , Metaloproteinase 9 da Matriz/metabolismo , Neuroimunomodulação , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Esquizofrenia/metabolismo , Adulto , Animais , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Oxirredução , Estresse Oxidativo
18.
Schizophr Res ; 213: 96-106, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-30857872

RESUMO

The fast-spiking parvalbumin (PV) interneurons play a critical role in neural circuit activity and dysfunction of these cells has been implicated in the cognitive deficits typically observed in schizophrenia patients. Due to the high metabolic demands of PV neurons, they are particularly susceptible to oxidative stress. Given the extant literature exploring the pathological effects of oxidative stress on PV cells in cortical regions linked to schizophrenia, we decided to investigate whether PV neurons in other select brain regions, including sub-cortical structures, may be differentially affected by redox dysregulation induced oxidative stress during neurodevelopment in mice with a genetically compromised glutathione synthesis (Gclm KO mice). Our analyses revealed a spatio-temporal sequence of PV cell deficit in Gclm KO mice, beginning with the thalamic reticular nucleus at postnatal day (P) 20 followed by a PV neuronal deficit in the amygdala at P40, then in the lateral globus pallidus and the ventral hippocampus Cornu Ammonis 3 region at P90 and finally the anterior cingulate cortex at P180. We suggest that PV neurons in different brain regions are developmentally susceptible to oxidative stress and that anomalies in the neurodevelopmental calendar of metabolic regulation can interfere with neural circuit maturation and functional connectivity contributing to the emergence of developmental psychopathology.


Assuntos
Tonsila do Cerebelo , Globo Pálido , Giro do Cíngulo , Hipocampo , Interneurônios/metabolismo , Rede Nervosa , Oxirredução , Estresse Oxidativo/fisiologia , Parvalbuminas , Esquizofrenia/metabolismo , Núcleos Talâmicos , Tonsila do Cerebelo/crescimento & desenvolvimento , Tonsila do Cerebelo/metabolismo , Animais , Modelos Animais de Doenças , Globo Pálido/crescimento & desenvolvimento , Globo Pálido/metabolismo , Glutamato-Cisteína Ligase/genética , Giro do Cíngulo/crescimento & desenvolvimento , Giro do Cíngulo/metabolismo , Hipocampo/crescimento & desenvolvimento , Hipocampo/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Rede Nervosa/crescimento & desenvolvimento , Rede Nervosa/metabolismo , Núcleos Talâmicos/crescimento & desenvolvimento , Núcleos Talâmicos/metabolismo
19.
Neurobiol Dis ; 109(Pt A): 64-75, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29024713

RESUMO

The GluN2A subunit of NMDA receptors (NMDARs) plays a critical role during postnatal brain development as its expression increases while Glun2B expression decreases. Mutations and polymorphisms in GRIN2A gene, coding for GluN2A, are linked to developmental brain disorders such as mental retardation, epilepsy, schizophrenia. Published data suggest that GluN2A is involved in maturation and phenotypic maintenance of parvalbumin interneurons (PVIs), and these interneurons suffer from a deficient glutamatergic neurotransmission via GluN2A-containing NMDARs in schizophrenia. In the present study, we find that although PVIs and their associated perineuronal nets (PNNs) appear normal in anterior cingulate cortex of late adolescent/young adult GRIN2A KO mice, a lack of GluN2A delays PNN maturation. GRIN2A KO mice display a susceptibility to redox dysregulation as sub-threshold oxidative stress and subtle alterations in antioxidant systems are observed in their prefrontal cortex. Consequently, an oxidative insult applied during early postnatal development increases oxidative stress, decreases the number of parvalbumin-immunoreactive cells, and weakens the PNNs in KO but not WT mice. These effects are long-lasting, but preventable by the antioxidant, N-acetylcysteine. The persisting oxidative stress, deficit in PVIs and PNNs, and reduced local high-frequency neuronal synchrony in anterior cingulate of late adolescent/young adult KO mice, which have been challenged by an early-life oxidative insult, is accompanied with microglia activation. Altogether, these indicate that a lack of GluN2A-containing NMDARs alters the fine control of redox status, leading to a delayed maturation of PNNs, and conferring vulnerability for long-term oxidative stress, microglial activation, and PVI network dysfunction.


Assuntos
Giro do Cíngulo/metabolismo , Interneurônios/metabolismo , Oxirredução , Estresse Oxidativo , Parvalbuminas/metabolismo , Córtex Pré-Frontal/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Acetilcisteína , Animais , Dopamina/metabolismo , Matriz Extracelular , Feminino , Giro do Cíngulo/crescimento & desenvolvimento , Giro do Cíngulo/fisiologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/metabolismo , Receptores de N-Metil-D-Aspartato/genética
20.
Front Physiol ; 7: 142, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148080

RESUMO

Glutathione (GSH) deficits have been observed in several mental or degenerative illness, and so has the metabolic syndrome. The impact of a decreased glucose metabolism on the GSH system is well-known, but the effect of decreased GSH levels on the energy metabolism is unclear. The aim of the present study was to investigate the sensitivity to insulin in the mouse knockout (KO) for the modulatory subunit of the glutamate cysteine ligase (GCLM), the rate-limiting enzyme of GSH synthesis. Compared to wildtype (WT) mice, GCLM-KO mice presented with reduced basal plasma glucose and insulin levels. During an insulin tolerance test, GCLM-KO mice showed a normal fall in glycemia, indicating normal insulin secretion. However, during the recovery phase, plasma glucose levels remained lower for longer in KO mice despite normal plasma glucagon levels. This is consistent with a normal counterregulatory hormonal response but impaired mobilization of glucose from endogenous stores. Following a resident-intruder stress, during which stress hormones mobilize glucose from hepatic glycogen stores, KO mice showed a lower hyperglycemic level despite higher plasma cortisol levels when compared to WT mice. The lower hepatic glycogen levels observed in GCLM-KO mice could explain the impaired glycogen mobilization following induced hypoglycemia. Altogether, our results indicate that reduced liver glycogen availability, as observed in GCLM-KO mice, could be at the origin of their lower basal and challenged glycemia. Further studies will be necessary to understand how a GSH deficit, typically observed in GCLM-KO mice, leads to a deficit in liver glycogen storage.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA