Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
J Phys Chem Lett ; 14(29): 6572-6576, 2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37458683

RESUMO

The electrodynamics of nanoconfined water have been shown to change dramatically compared to bulk water, opening room for safe electrochemical systems. We demonstrate a nanofluidic "water-only" battery that exploits anomalously high electrolytic properties of pure water at firm confinement. The device consists of a membrane electrode assembly of carbon-based nanomaterials, forming continuously interconnected water-filled nanochannels between the separator and electrodes. The efficiency of the cell in the 1-100 nm pore size range shows a maximum energy density at 3 nm, challenging the region of the current metal-ion batteries. Our results establish the electrodynamic fundamentals of nanoconfined water and pave the way for low-cost and inherently safe energy storage solutions that are much needed in the renewable energy sector.

2.
Nanomaterials (Basel) ; 13(11)2023 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-37299674

RESUMO

Improving the energy density of Li-ion batteries is critical to meet the requirements of electric vehicles and energy storage systems. In this work, LiFePO4 active material was combined with single-walled carbon nanotubes as the conductive additive to develop high-energy-density cathodes for rechargeable Li-ion batteries. The effect of the morphology of the active material particles on the cathodes' electrochemical characteristics was investigated. Although providing higher packing density of electrodes, spherical LiFePO4 microparticles had poorer contact with an aluminum current collector and showed lower rate capability than plate-shaped LiFePO4 nanoparticles. A carbon-coated current collector helped enhance the interfacial contact with spherical LiFePO4 particles and was instrumental in combining high electrode packing density (1.8 g cm-3) with excellent rate capability (100 mAh g-1 at 10C). The weight percentages of carbon nanotubes and polyvinylidene fluoride binder in the electrodes were optimized for electrical conductivity, rate capability, adhesion strength, and cyclic stability. The electrodes that were formulated with 0.25 wt.% of carbon nanotubes and 1.75 wt.% of the binder demonstrated the best overall performance. The optimized electrode composition was used to formulate thick free-standing electrodes with high energy and power densities, achieving the areal capacity of 5.9 mAh cm-2 at 1C rate.

3.
Membranes (Basel) ; 13(2)2023 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-36837658

RESUMO

Redox flow batteries (RFBs) are a prospective energy storage platform to mitigate the discrepancy between barely adjustable energy production and fluctuating demand. The energy density and affordability of RFBs can be improved significantly through the transition from aqueous systems to non-aqueous (NAq) due to their wider electrochemical stability window and better solubility of active species. However, the NAqRFBs suffer from a lack of effective membranes with high ionic conductivity (IC), selectivity (low permeability), and stability. Here, we for the first time thoroughly analyse the impact of tape-casting solvents (dimethylformamide-DMF; dimethylsulfoxide-DMSO; N-methyl-2-pyrrolidone-NMP) on the properties of the composite Li-conductive membrane (Li1.3Al0.3Ti1.7(PO4)3 filler within poly(vinylidene fluoride) binder-LATP+PVDF). We show that the prolonged exposure of LATP to the studied solvents causes slight morphological, elemental, and intrastructural changes, dropping ceramic's IC from 3.1 to 1.6-1.9 ∙ 10-4 S cm-1. Depending on the solvent, the final composite membranes exhibit IC of 1.1-1.7 ∙ 10-4 S cm-1 (comparable with solvent-treated ceramics) along with correlating permeability coefficients of 2.7-3.1 ∙ 10-7 cm2 min-1. We expect this study to complement the understanding of how the processes underlying the membrane fabrication impact its functional features and to stimulate further in-depth research of NAqRFB membranes.

4.
J Phys Chem B ; 127(1): 261-268, 2023 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-36583593

RESUMO

While the static structure of aqueous electrolytes has been studied for decades, their dynamic microscopic structure remains unresolved yet critical in many areas. We report a comparative study of dc and ac (1 Hz to 20 GHz) conductivity data of weak and strong electrolytes, highlighting previously missing differences and similarities. Based on these results, we introduce into consideration the intrinsic short-lived ions of water, namely, excess protons (H3O+) and proton holes (OH-). We show that the model accounting for the neutralization of these ions by the species of electrolyte explains the conductivity of aqueous solutions in the concentration range 10-7-10 M. Based on independent experimental data, we hypothesize that the aggregation of the species in weak electrolytes may determine the main difference between the conductivity of weak and strong electrolytes. Our results push forward the understanding of the dynamic structure of aqueous electrolyte solutions and are important to nanofluidic, biological, and electrochemical systems.


Assuntos
Eletrólitos , Prótons , Eletrólitos/química , Íons/química , Condutividade Elétrica , Análise Espectral , Água/química
5.
Int J Mol Sci ; 23(21)2022 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-36362163

RESUMO

Perovskite solar cells (PSCs) currently reach high efficiencies, while their insufficient stability remains an obstacle to their technological commercialization. The introduction of hole-transport materials (HTMs) into the device structure is a key approach for enhancing the efficiency and stability of devices. However, currently, the influence of the HTM structure or properties on the characteristics and operational stability of PSCs remains insufficiently studied. Herein, we present four novel push-pull small molecules, H1-4, with alternating thiophene and benzothiadiazole or fluorine-loaded benzothiadiazole units, which contain branched and linear alkyl chains in the different positions of terminal thiophenes to evaluate the impact of HTM structure on PSC performance. It is demonstrated that minor changes in the structure of HTMs significantly influence their behavior in thin films. In particular, H3 organizes into highly ordered lamellar structures in thin films, which proves to be crucial in boosting the efficiency and stability of PSCs. The presented results shed light on the crucial role of the HTM structure and the morphology of films in the performance of PSCs.


Assuntos
Energia Solar , Tiofenos/química , Halogenação
6.
ACS Appl Mater Interfaces ; 14(35): 39907-39916, 2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36007961

RESUMO

All-solid-state batteries primarily focus on macrocrystalline solid electrolyte/cathode interfaces, and little is explored on the growth and stability of nanograined Li-garnet and cathode ones. In this work, a thin (∼500 nm) film of LiCoO2 (LCO) has been grown on top of the polycrystalline layer of Ta-doped Li7La3Zr2O12 (Ta-LLZO) solid electrolyte using the pulsed laser deposition (PLD) technique. Scanning transmission electron microscopy, electron diffraction, and electron tomography demonstrated that the LCO film is formed by columnar elements with the shape of inverted cones. The film appears to be highly textured, with the (003) LCO crystal planes parallel to the LCO/Ta-LLZO interface and with internal pores shaped by the {104} and {102} planes. According to density functional theory (DFT) calculations, this specific microstructure is governed by a competition between free energies of the corresponding crystal planes, which in turn depends on the oxygen and lithium chemical potentials during the deposition, indicating that thermodynamics plays an important role in the resulting LCO microstructure even under nonequilibrium PLD conditions. Based on the thermodynamic estimates, the experimental conditions within the LCO stability domain are proposed for the preferential {104} LCO orientation, which is considered favorable for enhanced Li diffusion in the positive electrode layers of all-solid-state batteries.

7.
Chem Sci ; 13(27): 8161-8170, 2022 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-35919425

RESUMO

The demand for fast-charging metal-ion batteries underlines the importance of anodes that work at high currents with no risk of dendrite formation. NiBTA, a one-dimensional Ni-based polymer derived from benzenetetramine (BTA), is a recently proposed promising material for safe fast-charging batteries. However, its charge-discharge mechanisms remained unclear and controversial. Here we solve the controversies by providing the first rigorous study using a combination of advanced theoretical and experimental techniques, including operando and ex situ X-ray diffraction, operando Raman spectroscopy and ex situ X-ray absorption near-edge spectroscopy (XANES). In safe potential ranges (0.5-2.0 V vs. M+/M, M = Li, Na or K), NiBTA offers high capacities, fast charge-discharge kinetics, high cycling stability and compatibility with various cations (Li+, Na+, K+). In the Na- and K-based cells, fast bulk faradaic processes are manifested for partially reduced states. Atomistic simulations explain the fast kinetics by facile rotations and displacements of the macromolecules in the crystal, opening channels for fast ion insertion. The material undergoes distinct crystal structure rearrangements in the Li-, Na- and K-based systems, which explains different electrochemical features. At the molecular level, the charge storage mechanism involves reversible two-electron reduction of the repeating units accompanied by a change of the absorption bandgap. The reversible reduction involves filling of the orbitals localized at the ligand moieties. No reduction of NiBTA beyond two electrons per repeating unit is observed at potentials down to 0 V vs. M+/M.

8.
Nat Commun ; 13(1): 4097, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835761

RESUMO

Polyanion compounds offer a playground for designing prospective electrode active materials for sodium-ion storage due to their structural diversity and chemical variety. Here, by combining a NaVPO4F composition and KTiOPO4-type framework via a low-temperature (e.g., 190 °C) ion-exchange synthesis approach, we develop a high-capacity and high-voltage positive electrode active material. When tested in a coin cell configuration in combination with a Na metal negative electrode and a NaPF6-based non-aqueous electrolyte solution, this cathode active material enables a discharge capacity of 136 mAh g-1 at 14.3 mA g-1 with an average cell discharge voltage of about 4.0 V. Furthermore, a specific discharge capacity of 123 mAh g-1 at 5.7 A g-1 is also reported for the same cell configuration. Through ex situ and operando structural characterizations, we also demonstrate that the reversible Na-ion storage at the positive electrode occurs mostly via a solid-solution de/insertion mechanism.

9.
Phys Chem Chem Phys ; 24(22): 13941-13950, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621272

RESUMO

The diffusion of excitons in perovskites and transition metal dichalcogenides shows clear anomalous, subdiffusive behaviour in experiments. In this paper we develop a non-Markovian mobile-immobile model which provides an explanation of this behaviour through paired theoretical and simulation approaches. The simulation model is based on a random walk on a 2D lattice with randomly distributed deep traps such that the trapping time distribution involves slowly decaying power-law asymptotics. The theoretical model uses coupled diffusion and rate equations for free and trapped excitons, respectively, with an integral term responsible for trapping. The model provides a good fitting of the experimental data, thus, showing a way for quantifying the exciton diffusion dynamics.

10.
ACS Appl Mater Interfaces ; 13(47): 56366-56374, 2021 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-34784712

RESUMO

Ti2Nb2O9 with a tunnel-type structure is considered as a perspective negative electrode material for Li-ion batteries (LIBs) with theoretical capacity of 252 mAh g-1 corresponding to one-electron reduction/oxidation of Ti and Nb, but only ≈160 mAh g-1 has been observed practically. In this work, highly reversible capacity of 200 mAh g-1 with the average (de)lithiation potential of 1.5 V vs Li/Li+ is achieved for Ti2Nb2O9 with pseudo-2D layered morphology obtained via thermal decomposition of the NH4TiNbO5 intermediate prepared by K+→ H+→ NH4+ cation exchange from KTiNbO5. Using operando synchrotron powder X-ray diffraction (SXPD), single-phase (de)lithiation mechanism with 4.8% unit cell volume change is observed. Operando X-ray absorption near-edge structure (XANES) experiment revealed simultaneous Ti4+/Ti3+ and Nb5+/Nb4+ reduction/oxidation within the whole voltage range. Li+ migration barriers for Ti2Nb2O9 along [010] direction derived from density functional theory (DFT) calculations are within the 0.15-0.4 eV range depending on the Li content that is reflected in excellent C-rate capacity retention. Ti2Nb2O9 synthesized via the ion-exchange route appears as a strong contender to widely commercialized Ti-based negative electrode material Li4Ti5O12 in the next generation of high-performance LIBs.

11.
ACS Appl Mater Interfaces ; 13(45): 53746-53757, 2021 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-34734523

RESUMO

Redox flow batteries (RFBs) are a burgeoning electrochemical platform for long-duration energy storage, but present embodiments are too expensive for broad adoption. Nonaqueous redox flow batteries (NAqRFBs) seek to reduce system costs by leveraging the large electrochemical stability window of organic solvents (>3 V) to operate at high cell voltages and to facilitate the use of redox couples that are incompatible with aqueous electrolytes. However, a key challenge for emerging nonaqueous chemistries is the lack of membranes/separators with suitable combinations of selectivity, conductivity, and stability. Single-ion conducting ceramics, integrated into a flexible polymer matrix, may offer a pathway to attain performance attributes needed for enabling competitive nonaqueous systems. Here, we explore composite polymer-inorganic binder-filler membranes for lithium-based NAqRFBs, investigating two different ceramic compounds with NASICON-type (NASICON: sodium (Na) superionic conductor) crystal structure, Li1.3Al0.3Ti1.7(PO4)3 (LATP) and Li1.4Al0.4Ge0.2Ti1.4(PO4)3 (LAGTP), each blended with a polyvinylidene fluoride (PVDF) polymeric matrix. We characterize the physicochemical and electrochemical properties of the synthesized membranes as a function of processing conditions and formulation using a range of microscopic and electrochemical techniques. Importantly, the electrochemical stability window of the as-prepared membranes lies between 2.2-4.5 V vs Li/Li+. We then integrate select composite membranes into a single electrolyte flow cell configuration and perform polarization measurements with different redox electrolyte compositions. We find that mechanically robust, chemically stable LATP/PVDF composites can support >40 mA cm-2 at 400 mV cell overpotential, but further improvements are needed in selectivity. Overall, the insights gained through this work begin to establish the foundational knowledge needed to advance composite polymer-inorganic membranes/separators for NAqRFBs.

12.
iScience ; 24(9): 103033, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522869

RESUMO

Phenazines are redox-active nitrogen-containing heterocyclic compounds that can be produced by either bacteria or synthetic approaches. As an electron shuttles (mediators), phenazines are involved in several biological processes facilitating extracellular electron transfer (EET). Therefore, it is of great importance to understand the structural and electronic properties of phenazines that promote EET in microbial electrochemical systems. Our previous study experimentally investigated a phenazine-based library as an exogenous mediator system to facilitate EET in Escherichia coli. Herein, we combine our experimental data with density functional theory (DFT) calculations and multivariate linear regression modeling to understand the structure-function relationships in phenazine-based mediated EET. These calculations demonstrate that the computed redox properties of phenazines in lipophilic environments (e.g., cell membrane) correlate to experimental mediated current densities. Additional DFT-derived molecular properties were considered to develop a predictive model, which could be used in metabolic engineering approaches to introduce phenazines as endogenous mediators into bacteria.

13.
Inorg Chem ; 60(8): 5497-5506, 2021 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-33829762

RESUMO

Lithium iron phosphate, LiFePO4, a widely used cathode material in commercial Li-ion batteries, unveils a complex defect structure, which is still being deciphered. Using a combined computational and experimental approach comprising density functional theory (DFT)+U and molecular dynamics calculations and X-ray and neutron diffraction, we provide a comprehensive characterization of various OH point defects in LiFePO4, including their formation, dynamics, and localization in the interstitial space and at Li, Fe, and P sites. It is demonstrated that one, two, and four (five) OH groups can effectively stabilize Li, Fe, and P vacancies, respectively. The presence of D (H) at both Li and P sites for hydrothermally synthesized deuterium-enriched LiFePO4 is confirmed by joint X-ray and neutron powder diffraction structure refinement at 5 K that also reveals a strong deficiency of P of 6%. The P occupancy decrease is explained by the formation of hydrogarnet-like P/4H and P/5H defects, which have the lowest formation energies among all considered OH defects. Molecular dynamics simulation shows a rich structural diversity of these defects, with OH groups pointing both inside and outside vacant P tetrahedra creating numerous energetically close conformers, which hinders their explicit localization with diffraction-based methods solely. The discovered conformers include structural water molecules, which are only by 0.04 eV/atom H higher in energy than separate OH defects.

14.
Chem Commun (Camb) ; 57(24): 2986-2989, 2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33634297

RESUMO

Herein, we report the synthesis and investigation of a novel phenazine derivative M1 with oligomeric ethylene glycol ether substituents as a promising anolyte material for non-aqueous organic redox flow batteries (RFBs). The designed material undergoes a reversible and stable reduction at -1.72 V vs. Ag/AgNO3 and demonstrates excellent (>2.5 M) solubility in MeCN. A non-aqueous organic redox flow battery assembled using the novel phenazine derivative as an anolyte and a substituted triarylamine derivative as a catholyte exhibited high specific capacity (∼93% from the theoretical value), >95% Coulombic efficiency, 65% utilization of active materials and good charge-discharge cycling stability.

15.
ACS Appl Mater Interfaces ; 13(4): 5184-5194, 2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33474932

RESUMO

All-inorganic lead halide perovskites, for example, CsPbI3, are becoming more attractive for applications as light absorbers in perovskite solar cells because of higher thermal and photochemical stability as compared to their hybrid analogues. However, a specific drawback of the CsPbI3 absorber consists of the rapid phase transition from black to yellow nonphotoactive phase at low temperatures (e.g., <100 °C), which is accelerated under exposure to light. Herein, an experimental screening of an unprecedently large series (>30) of metal cations in a wide range of concentration has allowed us to establish a set of Pb2+ substitutes, facilitating the crystallization of the photoactive black CsPbI3 phase at low temperatures. Importantly, the appropriate Pb2+ substitution with Ca2+, Sr2+, Ce3+, Nd3+, Gd3+, Tb3+, Dy2+, Er3+, Yb2+, Lu3+, and Pt2+ cations has led to a spectacular enhancement of the film stability under realistic solar cell operation conditions (∼1 sun equivalent light exposure, 50 °C). Optoelectronic, structural, and morphological effects of partial Pb2+ substitution were investigated, providing a deeper insight into the processes underlying the stabilization of the CsPbI3 films. Several CsPb1-xMxI∼3 systems were evaluated as absorber materials in perovskite solar cells, demonstrating encouraging light power conversion efficiency of 11.4% in preliminary experiments. The obtained results feature the potential of designing efficient and stable all-inorganic perovskite solar cells using novel absorber materials rationally designed via compositional engineering.

17.
J Phys Chem Lett ; 11(24): 1-5, 2020 Dec 17.
Artigo em Inglês | MEDLINE | ID: mdl-33295771

RESUMO

The search for new environmental-friendly materials for energy storage is ongoing. In the presented paper, we propose polymer microgels as a new class of redox-active colloids (RACs). The microgel stable colloids are perspective low-viscosity fluids for advanced flow batteries with high volumetric energy density. In this research, we describe the procedure for the anchoring of 4-amino-2,2,6,6-tetramethylpiperidine-1-oxyl (4-amino-TEMPO) redox-active sites to the polymeric chains of water-soluble microgels based on poly(N-isopropylacrylamide)-poly(acrylic acid) interpenetrating networks. Using cyclic voltammetry and EPR spectroscopy, we show that ca. 14% of 4-amino-TEMPO groups retain electroactive properties and demonstrate the reversible redox response. It allows achieving a stable capacity of 2.5 mAh/g, enabling the low-viscous catholyte with a capacity of more than 100 mAh/L.

18.
Chempluschem ; 85(12): 2580-2585, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33155772

RESUMO

The quality of ion-selective membranes determines the efficiency of Vanadium Flow Batteries (VFBs), and alternatives to expensive Nafion™ materials are actively being searched for. One of the membrane architecture approaches is to imitate the Nafion™ structure with two separate phases: a conductive sulfonated polymer and an inner matrix. We introduce a new composite material based on sulfonated styrene polymerized inside the pores of a stretched PTFE matrix. Variation of polystyrene content and a sulfonation degree allowed to obtain membranes with IEC from to 0.96 to 1.84 mmol/g. Balanced vanadium permeability (ca. 5.5 ⋅ 10-6  cm2 /min) and proton conductivity (ca. 50 mS/cm) were achieved for the material with 21-23 % polystyrene content and a sulfonation degree up to 94 %. Membranes showed stable cycling with 81 % energy efficiency in a single-cell VFB. This work contributes to the existing knowledge of Nafion alternatives by providing a cheap and scalable method of membrane production.

19.
ACS Sens ; 5(11): 3547-3557, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33175510

RESUMO

The targeted diagnosis and effective treatments of chronic skin wounds remain a healthcare burden, requiring the development of sensors for real-time monitoring of wound healing activity. Herein, we describe an adaptable method for the fabrication of carbon ultramicroelectrode arrays (CUAs) on flexible substrates with the goal to utilize this sensor as a wearable device to monitor chronic wounds. As a proof-of-concept study, we demonstrate the electrochemical detection of three electroactive analytes as biomarkers for wound healing state in simulated wound media on flexible CUAs. Notably, to follow pathogenic responses, we characterize analytical figures of merit for identification and monitoring of bacterial warfare toxin pyocyanin (PYO) secreted by the opportunistic human pathogen Pseudomonas aeruginosa. We also demonstrate the detection of uric acid (UA) and nitric oxide (NO•), which are signaling molecules indicative of wound healing and immune responses, respectively. The electrochemically determined limit of detection (LOD) and linear dynamic range (LDR) for PYO, UA, and NO• fall within the clinically relevant concentrations. Additionally, we demonstrate the successful use of flexible CUAs for quantitative, electrochemical detection of PYO from P. aeruginosa strains and cellular NO• from immune cells in the wound matrix. Moreover, we present an electrochemical examination of the interaction between PYO and NO•, providing insight into pathogen-host responses. Finally, the effects of the antimicrobial agent, silver (Ag+), on P. aeruginosa PYO production rates are investigated on flexible CUAs. Our electrochemical results show that the addition of Ag+ to P. aeruginosa in wound simulant decreases PYO secretion rates.


Assuntos
Pseudomonas aeruginosa , Piocianina , Biomarcadores , Humanos , Limite de Detecção , Cicatrização
20.
J Phys Chem Lett ; 11(16): 6772-6778, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32689804

RESUMO

Hybrid perovskite solar cells attract a great deal of attention due to the feasibility of their low-cost production and their demonstration of impressive power conversion efficiencies (PCEs) exceeding 25%. However, the insufficient intrinsic stability of lead halides under light soaking and thermal stress impedes practical implementation of this technology. Herein, we show that the photothermal aging of a widely used perovskite light absorber such as MAPbI3 can be suppressed significantly by using polyvinylcarbazole (PVC) as a stabilizing agent. By applying a few complementary methods, we reveal that the PVC additive leads to passivation of defects in the absorber material. Introducing an optimal content of PVC into MAPbI3 delivers a PCE of 18.7% in combination with a significantly improved solar cell operational lifetime: devices retained ∼70% of the initial efficiency after light soaking for 1500 h, whereas the control samples without PVC degraded almost completely under the same conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA