Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
Wellcome Open Res ; 9: 232, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38867757

RESUMO

We present the genome assembly of the pennate diatom Epithemia pelagica strain UHM3201 (Ochrophyta; Bacillariophyceae; Rhopalodiales; Rhopalodiaceae) and that of its cyanobacterial endosymbiont (Chroococcales: Aphanothecaceae). The genome sequence of the diatom is 60.3 megabases in span, and the cyanobacterial genome has a length of 2.48 megabases. Most of the diatom nuclear genome assembly is scaffolded into 15 chromosomal pseudomolecules. The organelle genomes have also been assembled, with the mitochondrial genome 40.08 kilobases and the plastid genome 130.75 kilobases in length. A number of other prokaryote MAGs were also assembled.

2.
Proc Biol Sci ; 290(1991): 20222021, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36695036

RESUMO

A large fraction of marine primary production is performed by diverse small protists, and many of these phytoplankton are phagotrophic mixotrophs that vary widely in their capacity to consume bacterial prey. Prior analyses suggest that mixotrophic protists as a group vary in importance across ocean environments, but the mechanisms leading to broad functional diversity among mixotrophs, and the biogeochemical consequences of this, are less clear. Here we use isolates from seven major taxa to demonstrate a tradeoff between phototrophic performance (growth in the absence of prey) and phagotrophic performance (clearance rate when consuming Prochlorococcus). We then show that trophic strategy along the autotrophy-mixotrophy spectrum correlates strongly with global niche differences, across depths and across gradients of stratification and chlorophyll a. A model of competition shows that community shifts can be explained by greater fitness of faster-grazing mixotrophs when nutrients are scarce and light is plentiful. Our results illustrate how basic physiological constraints and principles of resource competition can organize complexity in the surface ocean ecosystem.


Assuntos
Ecossistema , Eucariotos , Eucariotos/fisiologia , Fitoplâncton , Clorofila A , Oceanos e Mares
3.
Sci Total Environ ; 829: 154075, 2022 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-35218838

RESUMO

The south shore of O'ahu, Hawai'i is one of the most visited coastal tourism areas in the United States with some of the highest instances of recreational waterborne disease. A population of the pathogenic bacterium Vibrio vulnificus lives in the estuarine Ala Wai Canal in Honolulu which surrounds the heavily populated tourism center of Waikiki. We developed a statistical model to predict V. vulnificus dynamics in this system using environmental measurements from moored oceanographic and atmospheric sensors in real time. During a year-long investigation, we analyzed water from 9 sampling events at 3 depths and 8 sites along the canal (n = 213) for 36 biogeochemical variables and V. vulnificus concentration using quantitative polymerase chain reaction (qPCR) of the hemolysin A gene (vvhA). The best multiple linear regression model of V. vulnificus concentration, explaining 80% of variation, included only six predictors: 5-day average rainfall preceding water sampling, daily maximum air temperature, water temperature, nitrate plus nitrite, and two metrics of humic dissolved organic matter (DOM). We show how real-time predictions of V. vulnificus concentration can be made using these models applied to the time series of water quality measurements from the Pacific Islands Ocean Observing System (PacIOOS) as well as the PacIOOS plume model based on the Waikiki Regional Ocean Modeling System (ROMS) products. These applications highlight the importance of including DOM variables in predictive modeling of V. vulnificus and the influence of rain events in elevating nearshore concentrations of V. vulnificus. Long-term climate model projections of locally downscaled monthly rainfall and air temperature were used to predict an overall increase in V. vulnificus concentration of approximately 2- to 3-fold by 2100. Improving these predictive models of microbial populations is critical for management of waterborne pathogen risk exposure, particularly in the wake of a changing global climate.


Assuntos
Vibrio vulnificus , Matéria Orgânica Dissolvida , Estuários , Proteínas Hemolisinas/genética , Estados Unidos , Vibrio vulnificus/genética
4.
Nat Commun ; 13(1): 799, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-35145076

RESUMO

Persistent nitrogen depletion in sunlit open ocean waters provides a favorable ecological niche for nitrogen-fixing (diazotrophic) cyanobacteria, some of which associate symbiotically with eukaryotic algae. All known marine examples of these symbioses have involved either centric diatom or haptophyte hosts. We report here the discovery and characterization of two distinct marine pennate diatom-diazotroph symbioses, which until now had only been observed in freshwater environments. Rhopalodiaceae diatoms Epithemia pelagica sp. nov. and Epithemia catenata sp. nov. were isolated repeatedly from the subtropical North Pacific Ocean, and analysis of sequence libraries reveals a global distribution. These symbioses likely escaped attention because the endosymbionts lack fluorescent photopigments, have nifH gene sequences similar to those of free-living unicellular cyanobacteria, and are lost in nitrogen-replete medium. Marine Rhopalodiaceae-diazotroph symbioses are a previously overlooked but widespread source of bioavailable nitrogen in marine habitats and provide new, easily cultured model organisms for the study of organelle evolution.


Assuntos
Diatomáceas/fisiologia , Água do Mar/microbiologia , Simbiose , Cianobactérias/fisiologia , Diatomáceas/classificação , Diatomáceas/genética , Diatomáceas/isolamento & purificação , Ecossistema , Nitrogênio , Fixação de Nitrogênio , Oceano Pacífico , Filogenia
5.
ISME J ; 16(6): 1557-1569, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35145244

RESUMO

Small eukaryotic phytoplankton are major contributors to global primary production and marine biogeochemical cycles. Many taxa are thought to be mixotrophic, but quantitative studies of phagotrophy exist for very few. In addition, little is known about consumers of Prochlorococcus, the abundant cyanobacterium at the base of oligotrophic ocean food webs. Here we describe thirty-nine new phytoplankton isolates from the North Pacific Subtropical Gyre (Station ALOHA), all flagellates ~2-5 µm diameter, and we quantify their ability to graze Prochlorococcus. The mixotrophs are from diverse classes (dictyochophytes, haptophytes, chrysophytes, bolidophytes, a dinoflagellate, and a chlorarachniophyte), many from previously uncultured clades. Grazing ability varied substantially, with specific clearance rate (volume cleared per body volume) varying over ten-fold across isolates and six-fold across genera. Slower grazers tended to create more biovolume per prey biovolume consumed. Using qPCR we found that the haptophyte Chrysochromulina was most abundant among the isolated mixotrophs at Station ALOHA, with 76-250 cells mL-1 across depths in the upper euphotic zone (5-100 m). Our results show that within a single ecosystem the phototrophs that ingest bacteria come from many branches of the eukaryotic tree, and are functionally diverse, indicating a broad range of strategies along the spectrum from phototrophy to phagotrophy.


Assuntos
Haptófitas , Prochlorococcus , Bactérias , Ecossistema , Filogenia , Fitoplâncton , Prochlorococcus/genética , Água do Mar/microbiologia
6.
Appl Environ Microbiol ; 88(6): e0188421, 2022 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-35196141

RESUMO

To better understand the controls on the opportunistic human pathogen Vibrio vulnificus in warm tropical waters, we conducted a year-long investigation in the Ala Wai Canal, a channelized estuary in Honolulu, HI. The abundance of V. vulnificus, as determined by quantitative PCR (qPCR) of the hemolysin gene (vvhA), varied spatially and temporally by nearly 4 orders of magnitude (≤3 to 14,000 mL-1). Unlike in temperate and subtropical systems, temperatures were persistently warm (19 to 31°C) and explained little of the variability in V. vulnificus abundance. Salinity (1 to 36 ppt) had a significant, but nonlinear, relationship with V. vulnificus abundance with the highest vvhA concentrations (>2,500 mL-1) observed only at salinities from 7 to 22 ppt. V. vulnificus abundances were lower on average during the summer dry season, when waters were warmer but more saline. The highest canal-wide average abundances were observed during a time of modest rainfall, when moderate salinities and elevated concentrations of reduced nitrogen species and silica suggested a groundwater influence. Parallel quantification of the vcgC gene suggested that C-type strains, which are responsible for most human infections, comprised 25% of the total V. vulnificus on average, but their relative contribution was greater at higher salinities, suggesting a broader salinity tolerance. Generalized regression models suggested that up to 67% of sample-to-sample variation (n = 202) in log-transformed V. vulnificus abundance was explained using the measured environmental variables, and up to 97% of the monthly variation in canal-wide average concentrations (n = 13) was explained with the best subset of four variables. IMPORTANCE Our data illustrate that, in the absence of strong seasonal variation in water temperature in the tropics, variation in salinity driven by rainfall becomes a primary controlling variable on V. vulnificus abundance. There is thus a tendency for a rainfall-driven seasonal cycle in V. vulnificus abundance which is inverted from the temperature-driven seasonal cycle at higher latitudes. However, stochasticity in rainfall and its nonlinear, indirect effects on V. vulnificus concentration means that high abundances can occur at any location in the canal at any time of year, making it challenging to predict concentrations of this pathogen at a high temporal or spatial resolution. Much of the variability in canal-wide average concentrations, on the other hand, was explained by a few variables that reflect the magnitude of freshwater input to the system, suggesting that relative risk of exposure to this pathogen could be predicted as an average for the system.


Assuntos
Vibrio vulnificus , Estuários , Água Doce , Humanos , Salinidade , Temperatura , Vibrio vulnificus/genética
7.
Nat Rev Microbiol ; 20(2): 83-94, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34522049

RESUMO

Understanding how phenotypes emerge from genotypes is a foundational goal in biology. As challenging as this task is when considering cellular life, it is further complicated in the case of viruses. During replication, a virus as a discrete entity (the virion) disappears and manifests itself as a metabolic amalgam between the virus and the host (the virocell). Identifying traits that unambiguously constitute a virus's phenotype is straightforward for the virion, less so for the virocell. Here, we present a framework for categorizing virus phenotypes that encompasses both virion and virocell stages and considers functional and performance traits of viruses in the context of fitness. Such an integrated view of virus phenotype is necessary for comprehensive interpretation of viral genome sequences and will advance our understanding of viral evolution and ecology.


Assuntos
Genoma Viral , Fenótipo , Vírus/classificação , Vírus/genética , Genótipo , Humanos , Vírion/genética , Replicação Viral/genética
8.
Bioinformatics ; 37(18): 2803-2810, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33822891

RESUMO

MOTIVATION: Metagenomic approaches hold the potential to characterize microbial communities and unravel the intricate link between the microbiome and biological processes. Assembly is one of the most critical steps in metagenomics experiments. It consists of transforming overlapping DNA sequencing reads into sufficiently accurate representations of the community's genomes. This process is computationally difficult and commonly results in genomes fragmented across many contigs. Computational binning methods are used to mitigate fragmentation by partitioning contigs based on their sequence composition, abundance or chromosome organization into bins representing the community's genomes. Existing binning methods have been principally tuned for bacterial genomes and do not perform favorably on viral metagenomes. RESULTS: We propose Composition and Coverage Network (CoCoNet), a new binning method for viral metagenomes that leverages the flexibility and the effectiveness of deep learning to model the co-occurrence of contigs belonging to the same viral genome and provide a rigorous framework for binning viral contigs. Our results show that CoCoNet substantially outperforms existing binning methods on viral datasets. AVAILABILITY AND IMPLEMENTATION: CoCoNet was implemented in Python and is available for download on PyPi (https://pypi.org/). The source code is hosted on GitHub at https://github.com/Puumanamana/CoCoNet and the documentation is available at https://coconet.readthedocs.io/en/latest/index.html. CoCoNet does not require extensive resources to run. For example, binning 100k contigs took about 4 h on 10 Intel CPU Cores (2.4 GHz), with a memory peak at 27 GB (see Supplementary Fig. S9). To process a large dataset, CoCoNet may need to be run on a high RAM capacity server. Such servers are typically available in high-performance or cloud computing settings. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Aprendizado Profundo , Microbiota , Metagenoma , Algoritmos , Software , Microbiota/genética , Análise de Sequência de DNA/métodos , Metagenômica/métodos
9.
Ecol Lett ; 24(2): 363-373, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33146939

RESUMO

Viruses span an impressive size range, with genome length varying a thousandfold and virion volume nearly a millionfold. For cellular organisms the scaling of traits with size is a pervasive influence on ecological processes, but whether size plays a central role in viral ecology is unknown. Here, we focus on viruses of aquatic unicellular organisms, which exhibit the greatest known range of virus size. We outline hypotheses within a quantitative framework, and analyse data where available, to consider how size affects the primary components of viral fitness. We argue that larger viruses have fewer offspring per infection and slower contact rates with host cells, but a larger genome tends to increase infection efficiency, broaden host range, and potentially increase attachment success and decrease decay rate. These countervailing selective pressures may explain why a breadth of sizes exist and even coexist when infecting the same host populations. Oligotrophic ecosystems may be enriched in "giant" viruses, because environments with resource-limited phagotrophs at low concentrations may select for broader host range, better control of host metabolism, lower decay rate and a physical size that mimics bacterial prey. Finally, we describe where further research is needed to understand the ecology and evolution of viral size diversity.


Assuntos
Ecossistema , Vírus , Organismos Aquáticos , Bactérias , Vírus de DNA , Vírus/genética
10.
Viruses ; 12(10)2020 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-33003637

RESUMO

Potassium ion (K+) channels have been observed in diverse viruses that infect eukaryotic marine and freshwater algae. However, experimental evidence for functional K+ channels among these alga-infecting viruses has thus far been restricted to members of the family Phycodnaviridae, which are large, double-stranded DNA viruses within the phylum Nucleocytoviricota. Recent sequencing projects revealed that alga-infecting members of Mimiviridae, another family within this phylum, may also contain genes encoding K+ channels. Here we examine the structural features and the functional properties of putative K+ channels from four cultivated members of Mimiviridae. While all four proteins contain variations of the conserved selectivity filter sequence of K+ channels, structural prediction algorithms suggest that only two of them have the required number and position of two transmembrane domains that are present in all K+ channels. After in vitro translation and reconstitution of the four proteins in planar lipid bilayers, we confirmed that one of them, a 79 amino acid protein from the virus Tetraselmis virus 1 (TetV-1), forms a functional ion channel with a distinct selectivity for K+ over Na+ and a sensitivity to Ba2+. Thus, virus-encoded K+ channels are not limited to Phycodnaviridae but also occur in the members of Mimiviridae. The large sequence diversity among the viral K+ channels implies multiple events of lateral gene transfer.


Assuntos
Mimiviridae/fisiologia , Canais de Potássio/fisiologia , Potássio/metabolismo , Vírus não Classificados/fisiologia , Sequência de Aminoácidos , Evolução Molecular , Genoma Viral , Canais Iônicos , Bicamadas Lipídicas , Mimiviridae/genética , Phycodnaviridae/genética , Filogenia , Canais de Potássio/classificação , Canais de Potássio/genética , Alinhamento de Sequência , Análise de Sequência , Sódio/metabolismo , Canais de Sódio , Vírus não Classificados/genética
11.
Nat Biotechnol ; 37(1): 29-37, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30556814

RESUMO

We present an extension of the Minimum Information about any (x) Sequence (MIxS) standard for reporting sequences of uncultivated virus genomes. Minimum Information about an Uncultivated Virus Genome (MIUViG) standards were developed within the Genomic Standards Consortium framework and include virus origin, genome quality, genome annotation, taxonomic classification, biogeographic distribution and in silico host prediction. Community-wide adoption of MIUViG standards, which complement the Minimum Information about a Single Amplified Genome (MISAG) and Metagenome-Assembled Genome (MIMAG) standards for uncultivated bacteria and archaea, will improve the reporting of uncultivated virus genomes in public databases. In turn, this should enable more robust comparative studies and a systematic exploration of the global virosphere.


Assuntos
Genoma Viral , Genômica/métodos , Cultura de Vírus , Vírus/genética , Vírus/isolamento & purificação , Bases de Dados Genéticas
12.
Am Nat ; 191(5): 566-581, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29693441

RESUMO

Viruses are integral to ecological and evolutionary processes, but we have a poor understanding of what drives variation in key traits across diverse viruses. For lytic viruses, burst size, latent period, and genome size are primary characteristics controlling host-virus dynamics. Here we synthesize data on these traits for 75 strains of phytoplankton viruses, which play an important role in global biogeochemistry. We find that primary traits of the host (genome size, growth rate) explain 40%-50% of variation in burst size and latent period. Specifically, burst size and latent period both exhibit saturating relationships versus the host∶virus genome size ratio, with both traits increasing at low genome size ratios while showing no relationship at high size ratios. In addition, latent period declines as host growth rate increases. We analyze a model of latent period evolution to explore mechanisms that could cause these patterns. The model predicts that burst size may often be set by the host genomic resources available for viral construction, while latent period evolves to permit this maximal burst size, modulated by host metabolic rate. These results suggest that general mechanisms may underlie the evolution of diverse viruses. Future extensions of this work could help explain viral regulation of host populations, viral influence on community structure and diversity, and viral roles in biogeochemical cycles.


Assuntos
Genoma Viral , Características de História de Vida , Modelos Genéticos , Fitoplâncton/virologia , Vírus/genética
13.
Virology ; 518: 423-433, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29649682

RESUMO

The family Mimiviridae contains uncommonly large viruses, many of which were isolated using a free-living amoeba as a host. Although the genomes of these and other mimivirids that infect marine heterokont and haptophyte protists have now been sequenced, there has yet to be a genomic investigation of a mimivirid that infects a member of the Viridiplantae lineage (green algae and land plants). Here we characterize the 668-kilobase complete genome of TetV-1, a mimivirid that infects the cosmopolitan green alga Tetraselmis (Chlorodendrophyceae). The analysis revealed genes not previously seen in viruses, such as the mannitol metabolism enzyme mannitol 1-phosphate dehydrogenase, the saccharide degradation enzyme alpha-galactosidase, and the key fermentation genes pyruvate formate-lyase and pyruvate formate-lyase activating enzyme. The TetV genome is the largest sequenced to date for a virus that infects a photosynthetic organism, and its genes reveal unprecedented mechanisms by which viruses manipulate their host's metabolism.


Assuntos
Clorófitas/virologia , Genes Virais , Vírus Gigantes/genética , Vírus Gigantes/isolamento & purificação , Redes e Vias Metabólicas/genética , Clorófitas/metabolismo , Fermentação , Genoma Viral , Anotação de Sequência Molecular , Vírus de Plantas , Análise de Sequência de DNA
14.
mBio ; 8(2)2017 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-28270584

RESUMO

Microbial life has been detected well into the igneous crust of the seafloor (i.e., the oceanic basement), but there have been no reports confirming the presence of viruses in this habitat. To detect and characterize an ocean basement virome, geothermally heated fluid samples (ca. 60 to 65°C) were collected from 117 to 292 m deep into the ocean basement using seafloor observatories installed in two boreholes (Integrated Ocean Drilling Program [IODP] U1362A and U1362B) drilled in the eastern sediment-covered flank of the Juan de Fuca Ridge. Concentrations of virus-like particles in the fluid samples were on the order of 0.2 × 105 to 2 × 105 ml-1 (n = 8), higher than prokaryote-like cells in the same samples by a factor of 9 on average (range, 1.5 to 27). Electron microscopy revealed diverse viral morphotypes similar to those of viruses known to infect bacteria and thermophilic archaea. An analysis of virus-like sequences in basement microbial metagenomes suggests that those from archaeon-infecting viruses were the most common (63 to 80%). Complete genomes of a putative archaeon-infecting virus and a prophage within an archaeal scaffold were identified among the assembled sequences, and sequence analysis suggests that they represent lineages divergent from known thermophilic viruses. Of the clustered regularly interspaced short palindromic repeat (CRISPR)-containing scaffolds in the metagenomes for which a taxonomy could be inferred (163 out of 737), 51 to 55% appeared to be archaeal and 45 to 49% appeared to be bacterial. These results imply that the warmed, highly altered fluids in deeply buried ocean basement harbor a distinct assemblage of novel viruses, including many that infect archaea, and that these viruses are active participants in the ecology of the basement microbiome.IMPORTANCE The hydrothermally active ocean basement is voluminous and likely provided conditions critical to the origins of life, but the microbiology of this vast habitat is not well understood. Viruses in particular, although integral to the origins, evolution, and ecology of all life on earth, have never been documented in basement fluids. This report provides the first estimate of free virus particles (virions) within fluids circulating through the extrusive basalt of the seafloor and describes the morphological and genetic signatures of basement viruses. These data push the known geographical limits of the virosphere deep into the ocean basement and point to a wealth of novel viral diversity, exploration of which could shed light on the early evolution of viruses.


Assuntos
Sedimentos Geológicos/virologia , Oceanos e Mares , Vírus/classificação , Vírus/isolamento & purificação , Archaea/virologia , Bactérias/virologia , Fontes Termais , Temperatura Alta , Metagenômica , Microscopia Eletrônica de Transmissão , Carga Viral , Vírion/ultraestrutura , Vírus/genética , Vírus/ultraestrutura
15.
J Virol Methods ; 241: 1-10, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27940257

RESUMO

Reverse transcription, quantitative PCR (RT-qPCR) is a sensitive method for quantification of specific RNA targets, but the first step of the assay, reverse transcription, is notoriously variable and sensitive to reaction conditions. In this study, we used purified Bacteriophage MS2 genomic RNA as a model virus target to test two different RT enzymes (SuperScript II and SuperScript III), two RT-priming strategies (gene-specific primers and random hexamers), and varying background RNA concentrations (0-50ngµl-1) to determine how these variables influence the efficiency of reverse transcription over a range of target concentrations (101-107 copies µl-1). The efficiency of the RT reaction was greatly improved by increasing both background RNA and primer concentrations, but the benefit provided by background RNA was source dependent. At a given target concentration, similar RT efficiencies were achieved with gene-specific primers and random hexamers, but the latter required much higher concentrations. With random hexamers, we observed a systematic variation in RT reaction efficiency as a function of target concentration. Using an RNA standard curve that was also subject to RT effectively normalized for this systematic variability, but the assay accuracy depended critically on the length of the standard RNA extending to the 3' end of the qPCR target site. Our results shed some light on previous contradictory conclusions in the literature, and provide insights that may aid in the design of RT-qPCR assays and the design of synthetic RNA standards when full-length material is not available.


Assuntos
DNA Complementar/genética , Levivirus/genética , RNA Viral/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Transcrição Reversa , Primers do DNA , Confiabilidade dos Dados , RNA Viral/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa/normas , Sensibilidade e Especificidade
16.
Environ Microbiol ; 18(11): 3714-3727, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-26950773

RESUMO

Early work on marine algal viruses focused exclusively on those having DNA genomes, but recent studies suggest that RNA viruses, especially those with positive-sense, single-stranded RNA (+ssRNA) genomes, are abundant in tropical and temperate coastal seawater. To test whether this was also true of polar waters, we estimated the relative abundances of RNA and DNA viruses using a mass ratio approach and conducted shotgun metagenomics on purified viral samples collected from a coastal site near Palmer Station, Antarctica on six occasions throughout a summer phytoplankton bloom (November-March). Our data suggest that RNA viruses contributed up to 65% of the total virioplankton (8-65%), and that, as observed previously in warmer waters, the majority of RNA viruses in these Antarctic RNA virus metagenomes had +ssRNA genomes most closely related to viruses in the order Picornavirales. Assembly of the metagenomic reads resulted in five novel, nearly complete genomes, three of which had features similar to diatom-infecting viruses. Our data are consistent with the hypothesis that RNA viruses influence diatom bloom dynamics in Antarctic waters.


Assuntos
Fitoplâncton/virologia , Vírus de RNA/isolamento & purificação , Regiões Antárticas , Diatomáceas/virologia , Genoma Viral , Metagenômica , Filogenia , Vírus de RNA/classificação , Vírus de RNA/genética , Água do Mar/virologia
17.
J Microbiol Methods ; 111: 24-30, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25602161

RESUMO

Plating environmental samples on vibrio-selective chromogenic media is a commonly used technique that allows one to quickly estimate concentrations of putative vibrio pathogens or to isolate them for further study. Although this approach is convenient, its usefulness depends directly on how well the procedure selects against false positives. We tested whether a chromogenic medium, CHROMagar Vibrio (CaV), used alone (single-plating) or in combination (double-plating) with a traditional medium thiosulfate-citrate-bile-salts (TCBS), could improve the discrimination among three pathogenic vibrio species (Vibrio cholerae, Vibrio parahaemolyticus, and Vibrio vulnificus) and thereby decrease the number of false-positive colonies that must be screened by molecular methods. Assays were conducted on water samples from two estuarine environments (one subtropical, one tropical) in a variety of seasonal conditions. The results of the double-plating method were confirmed by PCR and 16S rRNA sequencing. Our data indicate that there is no significant difference in the false-positive rate between CaV and TCBS when using a single-plating technique, but determining color changes on the two media sequentially (double-plating) reduced the rate of false positive identification in most cases. The improvement achieved was about two-fold on average, but varied greatly (from 0- to 5-fold) and depended on the sampling time and location. The double-plating method was most effective for V. vulnificus in warm months, when overall V. vulnificus abundance is high (false positive rates as low as 2%, n=178). Similar results were obtained for V. cholerae (minimum false positive rate of 16%, n=146). In contrast, the false positive rate for V. parahaemolyticus was always high (minimum of 59%, n=109). Sequence analysis of false-positive isolates indicated that the majority of confounding isolates are from the Vibrionaceae family, however, members of distantly related bacterial groups were also able to grow on vibrio-selective media, even when using the double-plating method. In conclusion, the double-plating assay is a simple means to increase the efficiency of identifying pathogenic vibrios in aquatic environments and to reduce the number of molecular assays required for identity confirmation. However, the high spatial and temporal variability in the performance of the media mean that molecular approaches are still essential to obtain the most accurate vibrio abundance estimates from environmental samples.


Assuntos
Contagem de Colônia Microbiana , Meios de Cultura/química , Vibrio cholerae/isolamento & purificação , Vibrio parahaemolyticus/isolamento & purificação , Vibrio vulnificus/isolamento & purificação , Microbiologia da Água , Compostos Cromogênicos , Reações Falso-Positivas , Filogenia , Reação em Cadeia da Polimerase , RNA Ribossômico 16S , Sensibilidade e Especificidade , Análise de Sequência de DNA , Vibrio cholerae/crescimento & desenvolvimento , Vibrio parahaemolyticus/crescimento & desenvolvimento , Vibrio vulnificus/crescimento & desenvolvimento
18.
Stand Genomic Sci ; 9(3): 632-45, 2014 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-25197450

RESUMO

Strain HIMB11 is a planktonic marine bacterium isolated from coastal seawater in Kaneohe Bay, Oahu, Hawaii belonging to the ubiquitous and versatile Roseobacter clade of the alphaproteobacterial family Rhodobacteraceae. Here we describe the preliminary characteristics of strain HIMB11, including annotation of the draft genome sequence and comparative genomic analysis with other members of the Roseobacter lineage. The 3,098,747 bp draft genome is arranged in 34 contigs and contains 3,183 protein-coding genes and 54 RNA genes. Phylogenomic and 16S rRNA gene analyses indicate that HIMB11 represents a unique sublineage within the Roseobacter clade. Comparison with other publicly available genome sequences from members of the Roseobacter lineage reveals that strain HIMB11 has the genomic potential to utilize a wide variety of energy sources (e.g. organic matter, reduced inorganic sulfur, light, carbon monoxide), while possessing a reduced number of substrate transporters.

19.
mBio ; 5(3): e01210-14, 2014 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-24939887

RESUMO

UNLABELLED: Viruses have a profound influence on the ecology and evolution of plankton, but our understanding of the composition of the aquatic viral communities is still rudimentary. This is especially true of those viruses having RNA genomes. The limited data that have been published suggest that the RNA virioplankton is dominated by viruses with positive-sense, single-stranded (+ss) genomes that have features in common with those of eukaryote-infecting viruses in the order Picornavirales (picornavirads). In this study, we investigated the diversity of the RNA virus assemblages in tropical coastal seawater samples using targeted PCR and metagenomics. Amplification of RNA-dependent RNA polymerase (RdRp) genes from fractions of a buoyant density gradient suggested that the distribution of two major subclades of the marine picornavirads was largely congruent with the distribution of total virus-like RNA, a finding consistent with their proposed dominance. Analyses of the RdRp sequences in the library revealed the presence of many diverse phylotypes, most of which were related only distantly to those of cultivated viruses. Phylogenetic analysis suggests that there were hundreds of unique picornavirad-like phylotypes in one 35-liter sample that differed from one another by at least as much as the differences among currently recognized species. Assembly of the sequences in the metagenome resulted in the reconstruction of six essentially complete viral genomes that had features similar to viruses in the families Bacillarna-, Dicistro-, and Marnaviridae. Comparison of the tropical seawater metagenomes with those from other habitats suggests that +ssRNA viruses are generally the most common types of RNA viruses in aquatic environments, but biases in library preparation remain a possible explanation for this observation. IMPORTANCE: Marine plankton account for much of the photosynthesis and respiration on our planet, and they influence the cycling of carbon and the distribution of nutrients on a global scale. Despite the fundamental importance of viruses to plankton ecology and evolution, most of the viruses in the sea, and the identities of their hosts, are unknown. This report is one of very few that delves into the genetic diversity within RNA-containing viruses in the ocean. The data expand the known range of viral diversity and shed new light on the physical properties and genetic composition of RNA viruses in the ocean.


Assuntos
Vírus de RNA/classificação , Vírus de RNA/isolamento & purificação , Água do Mar/virologia , Ecossistema , Variação Genética , Genoma Viral , Metagenômica , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Vírus de RNA/genética , Clima Tropical
20.
Appl Environ Microbiol ; 80(13): 3930-42, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24747903

RESUMO

Anodic aluminum oxide (AAO) filters have high porosity and can be manufactured with a pore size that is small enough to quantitatively capture viruses. These properties make the filters potentially useful for harvesting total microbial communities from water samples for molecular analyses, but their performance for nucleic acid extraction has not been systematically or quantitatively evaluated. In this study, we characterized the flux of water through commercially produced nanoporous (0.02 µm) AAO filters (Anotop; Whatman) and used isolates (a virus, a bacterium, and a protist) and natural seawater samples to test variables that we expected would influence the efficiency with which nucleic acids are recovered from the filters. Extraction chemistry had a significant effect on DNA yield, and back flushing the filters during extraction was found to improve yields of high-molecular-weight DNA. Using the back-flush protocol, the mass of DNA recovered from microorganisms collected on AAO filters was ≥ 100% of that extracted from pellets of cells and viruses and 94% ± 9% of that obtained by direct extraction of a liquid bacterial culture. The latter is a minimum estimate of the relative recovery of microbial DNA, since liquid cultures include dissolved nucleic acids that are retained inefficiently by the filter. In conclusion, we demonstrate that nucleic acids can be extracted from microorganisms on AAO filters with an efficiency similar to that achievable by direct extraction of microbes in suspension or in pellets. These filters are therefore a convenient means by which to harvest total microbial communities from multiple aqueous samples in parallel for subsequent molecular analyses.


Assuntos
Filtração/métodos , Técnicas Microbiológicas/métodos , Ácidos Nucleicos/isolamento & purificação , Plâncton/isolamento & purificação , Microbiologia da Água , Óxido de Alumínio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA