Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Biol ; 17(6): e3000346, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31246996

RESUMO

Some neurodegenerative diseases, like Parkinsons Disease (PD) and Spinocerebellar ataxia 3 (SCA3), are associated with distinct, altered gait and tremor movements that are reflective of the underlying disease etiology. Drosophila melanogaster models of neurodegeneration have illuminated our understanding of the molecular mechanisms of disease. However, it is unknown whether specific gait and tremor dysfunctions also occur in fly disease mutants. To answer this question, we developed a machine-learning image-analysis program, Feature Learning-based LImb segmentation and Tracking (FLLIT), that automatically tracks leg claw positions of freely moving flies recorded on high-speed video, producing a series of gait measurements. Notably, unlike other machine-learning methods, FLLIT generates its own training sets and does not require user-annotated images for learning. Using FLLIT, we carried out high-throughput and high-resolution analysis of gait and tremor features in Drosophila neurodegeneration mutants for the first time. We found that fly models of PD and SCA3 exhibited markedly different walking gait and tremor signatures, which recapitulated characteristics of the respective human diseases. Selective expression of mutant SCA3 in dopaminergic neurons led to a gait signature that more closely resembled those of PD flies. This suggests that the behavioral phenotype depends on the neurons affected rather than the specific nature of the mutation. Different mutations produced tremors in distinct leg pairs, indicating that different motor circuits were affected. Using this approach, fly models can be used to dissect the neurogenetic mechanisms that underlie movement disorders.


Assuntos
Análise da Marcha/métodos , Marcha/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Animais , Modelos Animais de Doenças , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/anatomia & histologia , Drosophila melanogaster/fisiologia , Extremidades , Processamento de Imagem Assistida por Computador/instrumentação , Doença de Machado-Joseph , Aprendizado de Máquina , Movimento/fisiologia , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/fisiopatologia , Doença de Parkinson
2.
Neurobiol Learn Mem ; 131: 176-81, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27063671

RESUMO

Elucidating the genetic, and neuronal bases for learned behavior is a central problem in neuroscience. A leading system for neurogenetic discovery is the vinegar fly Drosophila melanogaster; fly memory research has identified genes and circuits that mediate aversive and appetitive learning. However, methods to study adaptive food-seeking behavior in this animal have lagged decades behind rodent feeding analysis, largely due to the challenges presented by their small scale. There is currently no method to dynamically control flies' access to food. In rodents, protocols that use dynamic food delivery are a central element of experimental paradigms that date back to the influential work of Skinner. This method is still commonly used in the analysis of learning, memory, addiction, feeding, and many other subjects in experimental psychology. The difficulty of microscale food delivery means this is not a technique used in fly behavior. In the present manuscript we describe a microfluidic chip integrated with machine vision and automation to dynamically control defined liquid food presentations and sensory stimuli. Strikingly, repeated presentations of food at a fixed location produced improvements in path efficiency during food approach. This shows that improved path choice is a learned behavior. Active control of food availability using this microfluidic system is a valuable addition to the methods currently available for the analysis of learned feeding behavior in flies.


Assuntos
Comportamento Animal/fisiologia , Pesquisa Comportamental/métodos , Drosophila/fisiologia , Aprendizagem Espacial/fisiologia , Animais , Percepção Auditiva/fisiologia , Drosophila melanogaster , Alimentos , Percepção Visual/fisiologia
3.
Curr Biol ; 26(7): 981-6, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-27020741

RESUMO

Anxiety helps us anticipate and assess potential danger in ambiguous situations [1-3]; however, the anxiety disorders are the most prevalent class of psychiatric illness [4-6]. Emotional states are shared between humans and other animals [7], as observed by behavioral manifestations [8], physiological responses [9], and gene conservation [10]. Anxiety research makes wide use of three rodent behavioral assays-elevated plus maze, open field, and light/dark box-that present a choice between sheltered and exposed regions [11]. Exposure avoidance in anxiety-related defense behaviors was confirmed to be a correlate of rodent anxiety by treatment with known anxiety-altering agents [12-14] and is now used to characterize anxiety systems. Modeling anxiety with a small neurogenetic animal would further aid the elucidation of its neuronal and molecular bases. Drosophila neurogenetics research has elucidated the mechanisms of fundamental behaviors and implicated genes that are often orthologous across species. In an enclosed arena, flies stay close to the walls during spontaneous locomotion [15, 16], a behavior proposed to be related to anxiety [17]. We tested this hypothesis with manipulations of the GABA receptor, serotonin signaling, and stress. The effects of these interventions were strikingly concordant with rodent anxiety, verifying that these behaviors report on an anxiety-like state. Application of this method was able to identify several new fly anxiety genes. The presence of conserved neurogenetic pathways in the insect brain identifies Drosophila as an attractive genetic model for the study of anxiety and anxiety-related disorders, complementing existing rodent systems.


Assuntos
Ansiedade/metabolismo , Vias Neurais , Animais , Ansiedade/tratamento farmacológico , Ansiedade/genética , Diazepam/farmacologia , Drosophila , Luz , Camundongos , Receptor 5-HT1A de Serotonina/genética , Receptor 5-HT1B de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA