Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Phys Rev E ; 107(6-1): 064407, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37464627

RESUMO

At the cellular level, all biological function relies on enzymes to provide catalytic acceleration of essential biochemical processes driving cellular metabolism. The enzyme is presumed to lower the activation energy barrier separating reactants from products, but the precise mechanism remains unresolved. Here we examine the temperature dependence of the enzyme-catalyzed dissociation of p-nitrophenyl-α-D-glucopyranoside (pNPG), a chromogenic analog for maltose, isomaltose, and sucrose disaccharide sugars, into p-nitrophenol (pNP) and glucose (monosaccharide). The enzymes of interest are the wild type and mutant forms of glucosidase MalL produced by the probiotic bacterium Bacillus subtilis. The per-enzyme production rates k(T) for the pNPG→ glucose reaction all show a characteristic temperature profile with an Arrhenius-like (approximately exponential) slow acceleration at low temperatures, rising through a point of inflexion to reach a maximum, then turning over to decline steeply towards zero production at high temperatures. This asymmetric profile is found to be well fitted by convolving an exponential growth function f(T) with a Gaussian temperature distribution g(T) to produce an exponentially modified Gaussian function h(T). To give a physical interpretation of the convolution components, we make the temperature mapping Θ≡T_{ref}-T where T_{ref} marks the temperature at which a given mutant becomes fully denatured (unfolded) and therefore inactive, then convert the convolution components to probability density functions which obey the convolution theorem of statistics. Working in Θ space, we identify f(Θ) as the density function for an Arrhenius-like transition from ground-state A to metastable-state B, and g(Θ) as the Gaussian distribution of offset-temperature fluctuations for the metastable state. By mapping the standard thermodynamic relations for temperature and energy fluctuations to the enzyme frame of reference, we are able to derive an expression for the lifetime for the metastable B state. For the 15 enzyme experiments, we obtain a mean value 〈Δt〉≳(29.0±1.3)×10^{-15}s, in remarkably good agreement with the ∼30-fs estimate for the period of glycosidic bond oscillations extracted from published infrared spectroscopy. We suggest that the metastable B state provides a low-energy target that has the effect of lowering the activation energy barrier by presenting an alternative axis for the reaction coordinate.


Assuntos
Glucose , Temperatura Alta , Temperatura , Termodinâmica , Catálise , Cinética
2.
Int J Mol Sci ; 24(7)2023 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-37047423

RESUMO

To investigate the impact of experimental interventions on living biological tissue, ex vivo rodent brain slices are often used as a more controllable alternative to a live animal model. However, for meaningful results, the biological sample must be known to be healthy and viable. One of the gold-standard approaches to identifying tissue viability status is to measure the rate of tissue oxygen consumption under specific controlled conditions. Here, we work with thin (400 µm) slices of mouse cortical brain tissue which are sustained by a steady flow of oxygenated artificial cerebralspinal fluid (aCSF) at room temperature. To quantify tissue oxygen consumption (Q), we measure oxygen partial pressure (pO2) as a function of probe depth. The curvature of the obtained parabolic (or parabola-like) pO2 profiles can be used to extract Q, providing one knows the Krogh coefficient Kt, for the tissue. The oxygen trends are well described by a Fick's law diffusion-consumption model developed by Ivanova and Simeonov, and expressed in terms of ratio (Q/K), being the rate of oxygen consumption in tissue divided by the Krogh coefficient (oxygen diffusivity × oxygen solubility) for tissue. If the fluid immediately adjacent to the tissue can be assumed to be stationary (i.e., nonflowing), one may invoke conservation of oxygen flux K·(∂P/∂x) across the interface to deduce (Kt/Kf), the ratio of Krogh coefficients for tissue and fluid. Using published interpolation formulas for the effect of salt content and temperature on oxygen diffusivity and solubility for pure water, we estimate Kf, the Krogh coefficient for aCSF, and hence deduce the Kt coefficient for tissue. We distinguish experimental uncertainty from natural biological variability by using pairs of repeated profiles at the same tissue location. We report a dimensionless Krogh ratio (Kt/Kf)=0.562±0.088 (mean ± SD), corresponding to a Krogh coefficient Kt=(1.29±0.21)×10-14 mol/(m·s·Pa) for mouse cortical tissue at room temperature, but acknowledge the experimental limitation of being unable to verify that the fluid boundary layer is truly stationary. We compare our results with those reported in the literature, and comment on the challenges and ambiguities caused by the extensive use of 'biologically convenient' non-SI units for tissue Krogh coefficient.


Assuntos
Oxigênio , Roedores , Animais , Camundongos , Difusão , Testes de Função Respiratória , Consumo de Oxigênio
3.
J Biomol Struct Dyn ; 40(20): 10023-10032, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34229582

RESUMO

The novel coronavirus SARS-CoV-2, responsible for the present COVID-19 global pandemic, is known to bind to the angiotensin converting enzyme-2 (ACE2) receptor in human cells. A possible treatment of COVID-19 could involve blocking ACE2 and/or disabling the spike protein on the virus. Here, molecular dynamics simulations were performed to test the binding affinities of nine candidate compounds. Of these, three drugs showed significant therapeutic potential that warrant further investigation: SN35563, a ketamine ester analogue, was found to bind strongly to the ACE2 receptor but weakly within the spike receptor-binding domain (RBD); in contrast, arbidol and hydroxychloroquine bound preferentially with the spike RBD rather than ACE2. A fourth drug, remdesivir, bound approximately equally to both the ACE2 and viral spike RBD, thus potentially increasing risk of viral infection by bringing the spike protein into closer proximity to the ACE2 receptor. We suggest more experimental investigations to test that SN35563-in combination with arbidol or hydroxychloroquine-might act synergistically to block viral cell entry by providing therapeutic blockade of the host ACE2 simultaneous with reduction of viral spike receptor-binding; and that this combination therapy would allow the use of smaller doses of each drug.Communicated by Ramaswamy H. Sarma.


Assuntos
Enzima de Conversão de Angiotensina 2 , Antivirais , Receptores Virais , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus , Humanos , Enzima de Conversão de Angiotensina 2/antagonistas & inibidores , Enzima de Conversão de Angiotensina 2/química , Sítios de Ligação , COVID-19 , Hidroxicloroquina/farmacologia , Simulação de Dinâmica Molecular , Ligação Proteica , Receptores Virais/antagonistas & inibidores , Receptores Virais/química , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/antagonistas & inibidores , Glicoproteína da Espícula de Coronavírus/química , Antivirais/farmacologia
4.
Neuroimage ; 227: 117633, 2021 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316393

RESUMO

We present a detailed analysis of the Hindriks and van Putten thalamocortical mean-field model for propofol anesthesia [NeuroImage 60(23), 2012]. The Hindriks and van Putten (HvP) model predicts increases in delta and alpha power for moderate (up to 130%) prolongation of GABAA inhibitory response, corresponding to light anesthetic sedation. Our analysis reveals that, for deeper anesthetic effect, the model exhibits an unexpected abrupt jump in cortical activity from a low-firing state to an extremely high-firing stable state (∼250 spikes/s), and remains locked there even at GABAA prolongations as high as 300% which would be expected to induce full comatose suppression of all firing activity. We demonstrate that this unphysiological behavior can be completely suppressed with appropriate tuning of the parameters controlling the sigmoidal functions that map soma voltage to firing rate for the excitatory and inhibitory neural populations, coupled with elimination of the putative population-dependent anesthetic efficacies introduced in the HvP model. The modifications reported here constrain the anesthetized brain activity into a biologically plausible range in which the cortex now has access to a moderate-firing state ("awake") and a low-firing ("anesthetized") state such that the brain can transition from "awake" to "anesthetized" states at a critical level of drug concentration. The modified HvP model predicts a drug-effect hysteresis in which the drug concentration required for induction is larger than that at emergence. In addition, the revised model shows a decrease in the intensity and frequency of alpha-band fluctuations, transitioning to delta-band dominance, with deepening anesthesia. These predicted drug concentration-dependent changes in EEG dynamics are consistent with clinical reports.


Assuntos
Anestésicos Intravenosos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Modelos Neurológicos , Rede Nervosa/efeitos dos fármacos , Inibição Neural/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Propofol/farmacologia , Córtex Cerebral/fisiologia , Humanos , Rede Nervosa/fisiologia , Inibição Neural/fisiologia , Neurônios/fisiologia
5.
Phys Rev E ; 99(1-1): 012318, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30780287

RESUMO

Spinodal decomposition is a well-known pattern-forming mechanism in metallurgic alloys, semiconductor crystals, and colloidal gels. In metallurgy, if a heated sample of a homogeneous Zn-Al alloy is suddenly quenched below a critical temperature, then the sample can spontaneously precipitate into inhomogenous textures of Zn- and Al-rich regions with significantly altered material properties such as ductility and hardness. Here we report on our recent discovery that a two-dimensional model of the human cortex with inhibitory diffusion can, under particular homogeneous initial conditions, exhibit a form of nonconserved spinodal decomposition in which regions of the cortex self-organize into hexagonally distributed binary patches of activity and inactivity. Fine-scale patterns precipitate rapidly, and then the dynamics slows to render coarser-scale shapes which can ripen into a range of slowly evolving patterns including mazelike labyrinths, hexagonal islands and continents, nucleating "mitotic cells" which grow to a critical size then subdivide, and inverse nucleations in which quiescent islands are surrounded by a sea of activity. One interesting class of activity coalesces into a soliton-like narrow ribbon of depolarization that traverses the cortex at ∼4cm/s. We speculate that this may correspond to the thus far unexplained interictal waves of cortical activation that precede grand-mal seizure in an epileptic event. We note that spinodal decomposition is quite distinct from the Turing mechanism for symmetry breaking in cortex investigated in earlier work by the authors [Steyn-Ross et al., Phys. Rev. E 76, 011916 (2007)PLEEE81539-375510.1103/PhysRevE.76.011916].

6.
Phys Rev E ; 97(6-1): 062403, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30011536

RESUMO

The dynamics of a stochastic type-I Hodgkin-Huxley-like point neuron model exposed to inhibitory synaptic noise are investigated as a function of distance from spiking threshold and the inhibitory influence of the general anesthetic agent propofol. The model is biologically motivated and includes the effects of intrinsic ion-channel noise via a stochastic differential equation description as well as inhibitory synaptic noise modeled as multiple Poisson-distributed impulse trains with saturating response functions. The effect of propofol on these synapses is incorporated through this drug's principal influence on fast inhibitory neurotransmission mediated by γ-aminobutyric acid (GABA) type-A receptors via reduction of the synaptic response decay rate. As the neuron model approaches spiking threshold from below, we track membrane voltage fluctuation statistics of numerically simulated stochastic trajectories. We find that for a given distance from spiking threshold, increasing the magnitude of anesthetic-induced inhibition is associated with augmented signatures of critical slowing: fluctuation amplitudes and correlation times grow as spectral power is increasingly focused at 0 Hz. Furthermore, as a function of distance from threshold, anesthesia significantly modifies the power-law exponents for variance and correlation time divergences observable in stochastic trajectories. Compared to the inverse square root power-law scaling of these quantities anticipated for the saddle-node bifurcation of type-I neurons in the absence of anesthesia, increasing anesthetic-induced inhibition results in an observable exponent <-0.5 for variance and >-0.5 for correlation time divergences. However, these behaviors eventually break down as distance from threshold goes to zero with both the variance and correlation time converging to common values independent of anesthesia. Compared to the case of no synaptic input, linearization of an approximating multivariate Ornstein-Uhlenbeck model reveals these effects to be the consequence of an additional slow eigenvalue associated with synaptic activity that competes with those of the underlying point neuron in a manner that depends on distance from spiking threshold.

7.
PLoS One ; 11(9): e0163003, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27631984

RESUMO

Growth of critical fluctuations prior to catastrophic state transition is generally regarded as a universal phenomenon, providing a valuable early warning signal in dynamical systems. Using an ecological fisheries model of three populations (juvenile prey J, adult prey A and predator P), a recent study has reported silent early warning signals obtained from P and A populations prior to saddle-node (SN) bifurcation, and thus concluded that early warning signals are not universal. By performing a full eigenvalue analysis of the same system we demonstrate that while J and P populations undergo SN bifurcation, A does not jump to a new state, so it is not expected to carry early warning signs. In contrast with the previous study, we capture a significant increase in the noise-induced fluctuations in the P population, but only on close approach to the bifurcation point; it is not clear why the P variance initially shows a decaying trend. Here we resolve this puzzle using observability measures from control theory. By computing the observability coefficient for the system from the recordings of each population considered one at a time, we are able to quantify their ability to describe changing internal dynamics. We demonstrate that precursor fluctuations are best observed using only the J variable, and also P variable if close to transition. Using observability analysis we are able to describe why a poorly observable variable (P) has poor forecasting capabilities although a full eigenvalue analysis shows that this variable undergoes a bifurcation. We conclude that observability analysis provides complementary information to identify the variables carrying early-warning signs about impending state transition.


Assuntos
Ecologia , Peixes , Modelos Teóricos , Animais
8.
Phys Rev E ; 93(2): 022402, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26986357

RESUMO

Mean-field models of the brain approximate spiking dynamics by assuming that each neuron responds to its neighbors via a naive spatial average that neglects local fluctuations and correlations in firing activity. In this paper we address this issue by introducing a rigorous formalism to enable spatial coarse-graining of spiking dynamics, scaling from the microscopic level of a single type 1 (integrator) neuron to a macroscopic assembly of spiking neurons that are interconnected by chemical synapses and nearest-neighbor gap junctions. Spiking behavior at the single-neuron scale ℓ≈10µm is described by Wilson's two-variable conductance-based equations [H. R. Wilson, J. Theor. Biol. 200, 375 (1999)], driven by fields of incoming neural activity from neighboring neurons. We map these equations to a coarser spatial resolution of grid length Bℓ, with B≫1 being the blocking ratio linking micro and macro scales. Our method systematically eliminates high-frequency (short-wavelength) spatial modes q(->) in favor of low-frequency spatial modes Q(->) using an adiabatic elimination procedure that has been shown to be equivalent to the path-integral coarse graining applied to renormalization group theory of critical phenomena. This bottom-up neural regridding allows us to track the percolation of synaptic and ion-channel noise from the single neuron up to the scale of macroscopic population-average variables. Anticipated applications of neural regridding include extraction of the current-to-firing-rate transfer function, investigation of fluctuation criticality near phase-transition tipping points, determination of spatial scaling laws for avalanche events, and prediction of the spatial extent of self-organized macrocolumnar structures. As a first-order exemplar of the method, we recover nonlinear corrections for a coarse-grained Wilson spiking neuron embedded in a network of identical diffusively coupled neurons whose chemical synapses have been disabled. Intriguingly, we find that reblocking transforms the original type 1 Wilson integrator into a type 2 resonator whose spike-rate transfer function exhibits abrupt spiking onset with near-vertical takeoff and chaotic dynamics just above threshold.


Assuntos
Modelos Neurológicos , Neurônios/citologia , Membrana Celular/metabolismo , Difusão , Fenômenos Eletrofisiológicos , Junções Comunicantes/metabolismo
9.
Artigo em Inglês | MEDLINE | ID: mdl-25871145

RESUMO

The dynamics of a spiking neuron approaching threshold is investigated in the framework of Markov-chain models describing the random state-transitions of the underlying ion-channel proteins. We characterize subthreshold channel-noise-induced transmembrane potential fluctuations in both type-I (integrator) and type-II (resonator) parametrizations of the classic conductance-based Hodgkin-Huxley equations. As each neuron approaches spiking threshold from below, numerical simulations of stochastic trajectories demonstrate pronounced growth in amplitude simultaneous with decay in frequency of membrane voltage fluctuations induced by ion-channel state transitions. To explore this progression of fluctuation statistics, we approximate the exact Markov treatment with a 12-variable channel-based stochastic differential equation (SDE) and its Ornstein-Uhlenbeck (OU) linearization and show excellent agreement between Markov and SDE numerical simulations. Predictions of the OU theory with respect to membrane potential fluctuation variance, autocorrelation, correlation time, and spectral density are also in agreement and illustrate the close connection between the eigenvalue structure of the associated deterministic bifurcations and the observed behavior of the noisy Markov traces on close approach to threshold for both integrator and resonator point-neuron varieties.


Assuntos
Modelos Neurológicos , Neurônios/citologia , Neurônios/metabolismo , Canais Iônicos/metabolismo , Cadeias de Markov , Processos Estocásticos
10.
J Math Neurosci ; 5: 9, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25859420

RESUMO

The Wilson-Cowan neural field equations describe the dynamical behavior of a 1-D continuum of excitatory and inhibitory cortical neural aggregates, using a pair of coupled integro-differential equations. Here we use bifurcation theory and small-noise linear stochastics to study the range of a phase transitions-sudden qualitative changes in the state of a dynamical system emerging from a bifurcation-accessible to the Wilson-Cowan network. Specifically, we examine saddle-node, Hopf, Turing, and Turing-Hopf instabilities. We introduce stochasticity by adding small-amplitude spatio-temporal white noise, and analyze the resulting subthreshold fluctuations using an Ornstein-Uhlenbeck linearization. This analysis predicts divergent changes in correlation and spectral characteristics of neural activity during close approach to bifurcation from below. We validate these theoretical predictions using numerical simulations. The results demonstrate the role of noise in the emergence of critically slowed precursors in both space and time, and suggest that these early-warning signals are a universal feature of a neural system close to bifurcation. In particular, these precursor signals are likely to have neurobiological significance as early warnings of impending state change in the cortex. We support this claim with an analysis of the in vitro local field potentials recorded from slices of mouse-brain tissue. We show that in the period leading up to emergence of spontaneous seizure-like events, the mouse field potentials show a characteristic spectral focusing toward lower frequencies concomitant with a growth in fluctuation variance, consistent with critical slowing near a bifurcation point. This observation of biological criticality has clear implications regarding the feasibility of seizure prediction.

11.
IEEE Trans Neural Syst Rehabil Eng ; 23(3): 468-74, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25163065

RESUMO

Characterizing brain dynamics during anesthesia is a main current challenge in anesthesia study. Several single channel electroencephalogram (EEG)-based commercial monitors like the Bispectral index (BIS) have suggested to examine EEG signal. But, the BIS index has obtained numerous critiques. In this study, we evaluate the concentration-dependent effect of the propofol on long-range frontal-temporal synchronization of EEG signals collected from eight subjects during a controlled induction and recovery design. We used order patterns cross recurrence plot and provide an index named order pattern laminarity (OPL) to assess changes in neuronal synchronization as the mechanism forming the foundation of conscious perception. The prediction probability of 0.9 and 0.84 for OPL and BIS specified that the OPL index correlated more strongly with effect-site propofol concentration. Also, our new index makes faster reaction to transients in EEG recordings based on pharmacokinetic and pharmacodynamic model parameters and demonstrates less variability at the point of loss of consciousness (standard deviation of 0.04 for OPL compared with 0.09 for BIS index). The result show that the OPL index can estimate anesthetic state of patient more efficiently than the BIS index in lightly sedated state with more tolerant of artifacts.


Assuntos
Anestesia , Anestésicos Intravenosos , Sincronização de Fases em Eletroencefalografia/fisiologia , Propofol , Adolescente , Adulto , Período de Recuperação da Anestesia , Anestésicos Intravenosos/farmacocinética , Sedação Consciente , Monitores de Consciência , Relação Dose-Resposta a Droga , Feminino , Humanos , Masculino , Neurônios/fisiologia , Percepção/fisiologia , Propofol/farmacocinética , Adulto Jovem
12.
Front Syst Neurosci ; 8: 215, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25400558

RESUMO

The electroencephalogram (EEG) patterns recorded during general anesthetic-induced coma are closely similar to those seen during slow-wave sleep, the deepest stage of natural sleep; both states show patterns dominated by large amplitude slow waves. Slow oscillations are believed to be important for memory consolidation during natural sleep. Tracking the emergence of slow-wave oscillations during transition to unconsciousness may help us to identify drug-induced alterations of the underlying brain state, and provide insight into the mechanisms of general anesthesia. Although cellular-based mechanisms have been proposed, the origin of the slow oscillation has not yet been unambiguously established. A recent theoretical study by Steyn-Ross et al. (2013) proposes that the slow oscillation is a network, rather than cellular phenomenon. Modeling anesthesia as a moderate reduction in gap-junction interneuronal coupling, they predict an unconscious state signposted by emergent low-frequency oscillations with chaotic dynamics in space and time. They suggest that anesthetic slow-waves arise from a competitive interaction between symmetry-breaking instabilities in space (Turing) and time (Hopf), modulated by gap-junction coupling strength. A significant prediction of their model is that EEG phase coherence will decrease as the cortex transits from Turing-Hopf balance (wake) to Hopf-dominated chaotic slow-waves (unconsciousness). Here, we investigate changes in phase coherence during induction of general anesthesia. After examining 128-channel EEG traces recorded from five volunteers undergoing propofol anesthesia, we report a significant drop in sub-delta band (0.05-1.5 Hz) slow-wave coherence between frontal, occipital, and frontal-occipital electrode pairs, with the most pronounced wake-vs.-unconscious coherence changes occurring at the frontal cortex.

13.
BMC Syst Biol ; 8: 45, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24725437

RESUMO

BACKGROUND: Investigation of the nonlinear pattern dynamics of a reaction-diffusion system almost always requires numerical solution of the system's set of defining differential equations. Traditionally, this would be done by selecting an appropriate differential equation solver from a library of such solvers, then writing computer codes (in a programming language such as C or Matlab) to access the selected solver and display the integrated results as a function of space and time. This "code-based" approach is flexible and powerful, but requires a certain level of programming sophistication. A modern alternative is to use a graphical programming interface such as Simulink to construct a data-flow diagram by assembling and linking appropriate code blocks drawn from a library. The result is a visual representation of the inter-relationships between the state variables whose output can be made completely equivalent to the code-based solution. RESULTS: As a tutorial introduction, we first demonstrate application of the Simulink data-flow technique to the classical van der Pol nonlinear oscillator, and compare Matlab and Simulink coding approaches to solving the van der Pol ordinary differential equations. We then show how to introduce space (in one and two dimensions) by solving numerically the partial differential equations for two different reaction-diffusion systems: the well-known Brusselator chemical reactor, and a continuum model for a two-dimensional sheet of human cortex whose neurons are linked by both chemical and electrical (diffusive) synapses. We compare the relative performances of the Matlab and Simulink implementations. CONCLUSIONS: The pattern simulations by Simulink are in good agreement with theoretical predictions. Compared with traditional coding approaches, the Simulink block-diagram paradigm reduces the time and programming burden required to implement a solution for reaction-diffusion systems of equations. Construction of the block-diagram does not require high-level programming skills, and the graphical interface lends itself to easy modification and use by non-experts.


Assuntos
Biologia Computacional/métodos , Modelos Biológicos , Software , Córtex Cerebral/citologia , Córtex Cerebral/fisiologia , Difusão , Humanos , Neurônios/citologia , Neurônios/metabolismo , Dinâmica não Linear
14.
Cogn Neurodyn ; 6(3): 215-25, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23730353

RESUMO

During slow-wave sleep, general anesthesia, and generalized seizures, there is an absence of consciousness. These states are characterized by low-frequency large-amplitude traveling waves in scalp electroencephalogram. Therefore the oscillatory state might be an indication of failure to form coherent neuronal assemblies necessary for consciousness. A generalized seizure event is a pathological brain state that is the clearest manifestation of waves of synchronized neuronal activity. Since gap junctions provide a direct electrical connection between adjoining neurons, thus enhancing synchronous behavior, reducing gap-junction conductance should suppress seizures; however there is no clear experimental evidence for this. Here we report theoretical predictions for a physiologically-based cortical model that describes the general anesthetic phase transition from consciousness to coma, and includes both chemical synaptic and direct electrotonic synapses. The model dynamics exhibits both Hopf (temporal) and Turing (spatial) instabilities; the Hopf instability corresponds to the slow (≲8 Hz) oscillatory states similar to those seen in slow-wave sleep, general anesthesia, and seizures. We argue that a delicately balanced interplay between Hopf and Turing modes provides a canonical mechanism for the default non-cognitive rest state of the brain. We show that the Turing mode, set by gap-junction diffusion, is generally protective against entering oscillatory modes; and that weakening the Turing mode by reducing gap conduction can release an uncontrolled Hopf oscillation and hence an increased propensity for seizure and simultaneously an increased sensitivity to GABAergic anesthesia.

15.
Bull Math Biol ; 73(2): 398-416, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20821063

RESUMO

When the brain is in its noncognitive "idling" state, functional MRI measurements reveal the activation of default cortical networks whose activity is suppressed during cognitive processing. This default or background mode is characterized by ultra-slow BOLD oscillations (∼0.05 Hz), signaling extremely slow cycling in cortical metabolic demand across distinct cortical regions. Here we describe a model of the cortex which predicts that slow cycling of cortical activity can arise naturally as a result of nonlinear interactions between temporal (Hopf) and spatial (Turing) instabilities. The Hopf instability is triggered by delays in the inhibitory postsynaptic response, while the Turing instability is precipitated by increases in the strength of the gap-junction coupling between interneurons. We comment on possible implications for slow dendritic computation and information processing.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebral/fisiologia , Modelos Neurológicos , Descanso/fisiologia , Algoritmos , Córtex Cerebral/citologia , Simulação por Computador , Dendritos/fisiologia , Sinapses Elétricas/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Humanos , Potenciais Pós-Sinápticos Inibidores/fisiologia , Interneurônios/fisiologia , Inibição Neural/fisiologia , Transmissão Sináptica/fisiologia
16.
Brain Res ; 1360: 198-204, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-20833151

RESUMO

OBJECTIVE: Large-scale synchronous firing of neurons during seizures is modulated by electrotonic coupling between neurons via gap junctions. To explore roles for connexin36 (Cx36) gap junctions in seizures, we examined the seizure threshold of connexin36 knockout (Cx36KO) mice using a pentylenetetrazol (PTZ) model. METHODS: Mice (2-3months old) with Cx36 wildtype (WT) or Cx36KO genotype were treated with vehicle or 10-40mg/kg of the convulsant PTZ by intraperitoneal injection. Seizure and seizure-like behaviors were scored by examination of video collected for 20min. Quantitative real-time PCR (QPCR) was performed to measure potential compensatory neuronal connexin (Cx30.2, Cx37, Cx43 and Cx45), pannexin (PANX1 and PANX2) and gamma-aminobutyric acid type A (GABA(A)) receptor α1 subunit gene expression. RESULTS: Cx36KO animals exhibited considerably more severe seizures; 40mg/kg of PTZ caused severe generalized (≥grade III) seizures in 78% of KO, but just 5% of WT mice. A lower dose of PTZ (20mg/kg) induced grade II seizure-like behaviors in 40% KO vs. 0% of WT animals. There was no significant difference in either connexin, pannexin or GABA(A) α1 gene expression between WT and KO animals. CONCLUSION: Increased sensitivity of Cx36KO animals to PTZ-induced seizure suggests that Cx36 gap junctional communication functions as a physiological anti-convulsant mechanism, and identifies the Cx36 gap junction as a potential therapeutic target in epilepsy.


Assuntos
Comportamento Animal/efeitos dos fármacos , Conexinas/fisiologia , Convulsões/induzido quimicamente , Convulsões/psicologia , Animais , Conexinas/genética , Conexinas/metabolismo , Convulsivantes , DNA Complementar/biossíntese , DNA Complementar/genética , Feminino , Junções Comunicantes/metabolismo , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/metabolismo , Vias Neurais/fisiologia , Pentilenotetrazol , Receptores de GABA-A/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Sinapses/fisiologia , Proteína delta-2 de Junções Comunicantes
17.
J Biol Phys ; 36(3): 245-59, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19960241

RESUMO

We study the dynamics of the transition between the low- and high-firing states of the cortical slow oscillation by using intracellular recordings of the membrane potential from cortical neurons of rats. We investigate the evidence for a bistability in assemblies of cortical neurons playing a major role in the maintenance of this oscillation. We show that the trajectory of a typical transition takes an approximately exponential form, equivalent to the response of a resistor-capacitor circuit to a step-change in input. The time constant for the transition is negatively correlated with the membrane potential of the low-firing state, and values are broadly equivalent to neural time constants measured elsewhere. Overall, the results do not strongly support the hypothesis of a bistability in cortical neurons; rather, they suggest the cortical manifestation of the oscillation is a result of a step-change in input to the cortical neurons. Since there is evidence from previous work that a phase transition exists, we speculate that the step-change may be a result of a bistability within other brain areas, such as the thalamus, or a bistability among only a small subset of cortical neurons, or as a result of more complicated brain dynamics.

18.
Neuroimage ; 45(2): 298-311, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19121401

RESUMO

We argue that spatial patterns of cortical activation observed with EEG, MEG and fMRI might arise from spontaneous self-organisation of interacting populations of excitatory and inhibitory neurons. We examine the dynamical behavior of a mean-field cortical model that includes chemical and electrical (gap-junction) synapses, focusing on two limiting cases: the "slow-soma" limit with slow voltage feedback from soma to dendrite, and the "fast-soma" limit in which the feedback action of soma voltage onto dendrite reversal potentials is instantaneous. For slow soma-dendrite feedback, we find a low-frequency (approximately 1 Hz) dynamic Hopf instability, and a stationary Turing instability that catalyzes formation of patterned distributions of cortical firing-rate activity with pattern wavelength approximately 2 cm. Turing instability can only be triggered when gap-junction diffusion between inhibitory neurons is strong, but patterning is destroyed if the tonic level of subcortical excitation is raised sufficiently. Interaction between the Hopf and Turing instabilities may describe the non-cognitive background or "default" state of the brain, as observed by BOLD imaging. In the fast-soma limit, the model predicts a high-frequency Hopf (approximately 35 Hz) instability, and a traveling-wave gamma-band instability that manifests as a 2-D standing-wave pattern oscillating in place at approximately 30 Hz. Small levels of inhibitory diffusion enhance and broaden the definition of the gamma antinodal regions by suppressing higher-frequency spatial modes, but gamma emergence is not contingent on the presence of inhibitory gap junctions; higher levels of diffusion suppress gamma activity. Fast-soma instabilities are enhanced by increased subcortical stimulation. Prompt soma-dendrite feedback may be an essential component of the genesis and large-scale cortical synchrony of gamma activity observed at the point of cognition.


Assuntos
Potenciais de Ação/fisiologia , Relógios Biológicos/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Neurônios/fisiologia , Simulação por Computador , Humanos , Transmissão Sináptica/fisiologia
19.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(1 Pt 1): 011916, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17677503

RESUMO

One of the grand puzzles in neuroscience is establishing the link between cognition and the disparate patterns of spontaneous and task-induced brain activity that can be measured clinically using a wide range of detection modalities such as scalp electrodes and imaging tomography. High-level brain function is not a single-neuron property, yet emerges as a cooperative phenomenon of multiply-interacting populations of neurons. Therefore a fruitful modeling approach is to picture the cerebral cortex as a continuum characterized by parameters that have been averaged over a small volume of cortical tissue. Such mean-field cortical models have been used to investigate gross patterns of brain behavior such as anesthesia, the cycles of natural sleep, memory and erasure in slow-wave sleep, and epilepsy. There is persuasive and accumulating evidence that direct gap-junction connections between inhibitory neurons promote synchronous oscillatory behavior both locally and across distances of some centimeters, but, to date, continuum models have ignored gap-junction connectivity. In this paper we employ simple mean-field arguments to derive an expression for D2, the diffusive coupling strength arising from gap-junction connections between inhibitory neurons. Using recent neurophysiological measurements reported by Fukuda [J. Neurosci. 26, 3434 (2006)], we estimate an upper limit of D2 approximately 0.6cm2. We apply a linear stability analysis to a standard mean-field cortical model, augmented with gap-junction diffusion, and find this value for the diffusive coupling strength to be close to the critical value required to destabilize the homogeneous steady state. Computer simulations demonstrate that larger values of D2 cause the noise-driven model cortex to spontaneously crystalize into random mazelike Turing structures: centimeter-scale spatial patterns in which regions of high-firing activity are intermixed with regions of low-firing activity. These structures are consistent with the spatial variations in brain activity patterns detected with the BOLD (blood oxygen-level-dependent) signal detected with magnetic resonance imaging, and may provide a natural substrate for synchronous gamma-band rhythms observed across separated EEG (electroencephalogram) electrodes.


Assuntos
Relógios Biológicos/fisiologia , Córtex Cerebral/fisiologia , Cognição/fisiologia , Eletroencefalografia/métodos , Junções Comunicantes/fisiologia , Modelos Neurológicos , Rede Nervosa/fisiologia , Animais , Simulação por Computador , Humanos
20.
J Biol Phys ; 33(3): 213-46, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19669541

RESUMO

Mean-field models of the cortex have been used successfully to interpret the origin of features on the electroencephalogram under situations such as sleep, anesthesia, and seizures. In a mean-field scheme, dynamic changes in synaptic weights can be considered through fluctuation-based Hebbian learning rules. However, because such implementations deal with population-averaged properties, they are not well suited to memory and learning applications where individual synaptic weights can be important. We demonstrate that, through an extended system of equations, the mean-field models can be developed further to look at higher-order statistics, in particular, the distribution of synaptic weights within a cortical column. This allows us to make some general conclusions on memory through a mean-field scheme. Specifically, we expect large changes in the standard deviation of the distribution of synaptic weights when fluctuation in the mean soma potentials are large, such as during the transitions between the "up" and "down" states of slow-wave sleep. Moreover, a cortex that has low structure in its neuronal connections is most likely to decrease its standard deviation in the weights of excitatory to excitatory synapses, relative to the square of the mean, whereas a cortex with strongly patterned connections is most likely to increase this measure. This suggests that fluctuations are used to condense the coding of strong (presumably useful) memories into fewer, but dynamic, neuron connections, while at the same time removing weaker (less useful) memories.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA