Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Med Chem ; 66(17): 11761-11791, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37585683

RESUMO

Carbapenem resistance mediated by metallo-ß-lactamases (MBL) such as New Delhi metallo-ß-lactamase-1 (NDM-1) has become a major factor threatening the efficacy of essential ß-lactam antibiotics. Starting from hit fragment dipicolinic acid (DPA), 8-hydroxy- and 8-sulfonamido-quinoline-2-carboxylic acids were developed as inhibitors of NDM-1 with highly improved inhibitory activity and binding affinity. The most active compounds formed reversibly inactive ternary protein-inhibitor complexes with two zinc ions as proven by native protein mass spectrometry and bio-layer interferometry. Modification of the NDM-1 structure with remarkable entropic gain was shown by isothermal titration calorimetry and NMR spectroscopy of isotopically labeled protein. The best compounds were potent inhibitors of NDM-1 and other representative MBL with no or little inhibition of human zinc-binding enzymes. These inhibitors significantly reduced the minimum inhibitory concentrations (MIC) of meropenem for multidrug-resistant bacteria recombinantly expressing blaNDM-1 as well as for several multidrug-resistant clinical strains at concentrations non-toxic to human cells.


Assuntos
Carbapenêmicos , Quinolinas , Humanos , Carbapenêmicos/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Cinética , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana , Bactérias/metabolismo , Termodinâmica , Zinco/química , Ácidos Carboxílicos , Inibidores de beta-Lactamases/química
2.
Nat Chem Biol ; 19(10): 1196-1204, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37142807

RESUMO

Presentation of antigenic peptides by major histocompatibility complex class II (MHC-II) proteins determines T helper cell reactivity. The MHC-II genetic locus displays a large degree of allelic polymorphism influencing the peptide repertoire presented by the resulting MHC-II protein allotypes. During antigen processing, the human leukocyte antigen (HLA) molecule HLA-DM (DM) encounters these distinct allotypes and catalyzes exchange of the placeholder peptide CLIP by exploiting dynamic features of MHC-II. Here, we investigate 12 highly abundant CLIP-bound HLA-DRB1 allotypes and correlate dynamics to catalysis by DM. Despite large differences in thermodynamic stability, peptide exchange rates fall into a target range that maintains DM responsiveness. A DM-susceptible conformation is conserved in MHC-II molecules, and allosteric coupling between polymorphic sites affects dynamic states that influence DM catalysis. As exemplified for rheumatoid arthritis, we postulate that intrinsic dynamic features of peptide-MHC-II complexes contribute to the association of individual MHC-II allotypes with autoimmune disease.


Assuntos
Antígenos HLA-D , Antígenos HLA-DR , Humanos , Antígenos HLA-D/metabolismo , Antígenos HLA-DR/metabolismo , Peptídeos/química , Apresentação de Antígeno , Catálise , Ligação Proteica
3.
J Chem Inf Model ; 62(24): 6586-6601, 2022 12 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347992

RESUMO

Protein-protein interactions often rely on specialized recognition domains, such as WW domains, which bind to specific proline-rich sequences. The specificity of these protein-protein interactions can be increased by tandem repeats, i.e., two WW domains connected by a linker. With a flexible linker, the WW domains can move freely with respect to each other. Additionally, the tandem WW domains can bind in two different orientations to their target sequences. This makes the elucidation of complex structures of tandem WW domains extremely challenging. Here, we identify and characterize two complex structures of the tandem WW domain of human formin-binding protein 21 and a peptide sequence from its natural binding partner, the core-splicing protein SmB/B'. The two structures differ in the ligand orientation and, consequently, also in the relative orientation of the two WW domains. We analyze and probe the interactions in the complexes by molecular simulations and NMR experiments. The workflow to identify the complex structures uses molecular simulations, density-based clustering, and peptide docking. It is designed to systematically generate possible complex structures for repeats of recognition domains. These structures will help us to understand the synergistic and multivalency effects that generate the astonishing versatility and specificity of protein-protein interactions.


Assuntos
Peptídeos , Humanos , Domínios WW , Ligantes , Sequência de Aminoácidos , Peptídeos/química , Espectroscopia de Ressonância Magnética , Ligação Proteica
4.
Front Genet ; 12: 683946, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34220961

RESUMO

Type 1 diabetes is an autoimmune disease with rising incidence in high-income countries. Genetic and environmental predisposing factors contribute to the etiology of the disease, although their interaction is not sufficiently understood to allow for preventive action. Strongest known associations with genetic variation map to classical HLA class II genes. Because of its genetic complexity, the HLA region has been under-represented in genome-wide association studies, having potentially hindered the identification of relevant associations underlying the etiology of the disease. Here, we performed a comprehensive HLA-wide genetic association analysis of type 1 diabetes including multi-allelic and rare variants. We used high-density whole-exome sequencing data of the HLA region in the large UK Biobank dataset to apply gene-based association tests with a carefully defined type 1 diabetes phenotype (97 cases and 48,700 controls). Exon-based and single-variant association tests were used to complement the analysis. We replicated the known association of type 1 diabetes with the classical HLA-DQ gene. Tailoring the analysis toward rare variants, we additionally identified the lysine methyl transferase EHMT2 as associated. Deeper insight into genetic variation associated with disease as presented and discussed in detail here can help unraveling mechanistic details of the etiology of type 1 diabetes. More specifically, we hypothesize that genetic variation in EHMT2 could impact autoimmunity in type 1 diabetes development.

5.
Nat Commun ; 12(1): 4236, 2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34244493

RESUMO

The repertoire of peptides presented by major histocompatibility complex class I (MHC-I) molecules on the cell surface is tailored by the ER-resident peptide loading complex (PLC), which contains the exchange catalyst tapasin. Tapasin stabilizes MHC-I molecules and promotes the formation of stable peptide-MHC-I (pMHC-I) complexes that serve as T cell antigens. Exchange of suboptimal by high-affinity ligands is catalyzed by tapasin, but the underlying mechanism is still elusive. Here we analyze the tapasin-induced changes in MHC-I dynamics, and find the catalyst to exploit two essential features of MHC-I. First, tapasin recognizes a conserved allosteric site underneath the α2-1-helix of MHC-I, 'loosening' the MHC-I F-pocket region that accomodates the C-terminus of the peptide. Second, the scoop loop11-20 of tapasin relies on residue L18 to target the MHC-I F-pocket, enabling peptide exchange. Meanwhile, tapasin residue K16 plays an accessory role in catalysis of MHC-I allotypes bearing an acidic F-pocket. Thus, our results provide an explanation for the observed allele-specificity of catalyzed peptide exchange.


Assuntos
Alelos , Apresentação de Antígeno/genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Regulação Alostérica , Biocatálise , Cristalografia por Raios X , Antígenos de Histocompatibilidade Classe I/genética , Antígenos de Histocompatibilidade Classe I/isolamento & purificação , Antígenos de Histocompatibilidade Classe I/ultraestrutura , Humanos , Imunoglobulinas/metabolismo , Imunoglobulinas/ultraestrutura , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/isolamento & purificação , Proteínas de Membrana Transportadoras/ultraestrutura , Simulação de Dinâmica Molecular , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica em alfa-Hélice , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo
6.
Curr Opin Immunol ; 70: 95-104, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34052735

RESUMO

The major histocompatibility complex (MHC) loci are amongst the most polymorphic regions in the genomes of vertebrates. In the human population, thousands of MHC gene variants (alleles) exist that translate into distinct allotypes equipped with overlapping but unique peptide binding profiles. Understanding the differential structural and dynamic properties of MHC alleles and their interaction with critical regulators of peptide exchange bears the potential for more personalized strategies of immune modulation in the context of HLA-associated diseases.


Assuntos
Apresentação de Antígeno/genética , Antígenos de Histocompatibilidade Classe II/genética , Antígenos de Histocompatibilidade Classe I/genética , Polimorfismo Genético/genética , Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Polimorfismo Genético/imunologia
7.
Commun Biol ; 3(1): 141, 2020 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-32214225

RESUMO

FGF2 is a tumor cell survival factor that is exported from cells by an ER/Golgi-independent secretory pathway. This unconventional mechanism of protein secretion is based on direct translocation of FGF2 across the plasma membrane. The Na,K-ATPase has previously been shown to play a role in this process, however, the underlying mechanism has remained elusive. Here, we define structural elements that are critical for a direct physical interaction between FGF2 and the α1 subunit of the Na,K-ATPase. In intact cells, corresponding FGF2 mutant forms were impaired regarding both recruitment at the inner plasma membrane leaflet and secretion. Ouabain, a drug that inhibits both the Na,K-ATPase and FGF2 secretion, was found to impair the interaction of FGF2 with the Na,K-ATPase in cells. Our findings reveal the Na,K-ATPase as the initial recruitment factor for FGF2 at the inner plasma membrane leaflet being required for efficient membrane translocation of FGF2 to cell surfaces.


Assuntos
Membrana Celular/enzimologia , Fator 2 de Crescimento de Fibroblastos/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , ATPase Trocadora de Sódio-Potássio/metabolismo , Animais , Células CHO , Cricetulus , Fator 2 de Crescimento de Fibroblastos/química , Fator 2 de Crescimento de Fibroblastos/genética , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Sistemas do Segundo Mensageiro , Via Secretória , ATPase Trocadora de Sódio-Potássio/química , ATPase Trocadora de Sódio-Potássio/genética
8.
Structure ; 27(6): 977-987.e5, 2019 06 04.
Artigo em Inglês | MEDLINE | ID: mdl-31031201

RESUMO

The scaffolding protein intersectin 1 plays important roles in clathrin-mediated endocytosis and in the replenishment of release-ready synaptic vesicles (SV). Two splice variants of intersectin's SH3A domain are expressed in the brain, and association of the neuron-specific variant with synapsin I has been shown to enable sustained neurotransmission and to be regulated by an adjacent C-terminal motif. Here, we demonstrate that the ubiquitously expressed short SH3A variant of intersectin 1 interacts with an N-terminal intramolecular sequence that operates synergistically with the C-terminal motif. NMR spectroscopic investigations show that the five-amino acid insertion into the ß strand 2 of the neuronal SH3A variant introduces conformational plasticity incompatible with binding of the N-terminal sequence. The difference in the autoregulatory mechanism of the domain's variants differentially affects its synaptic binding partners, thereby establishing alternative splicing in conjunction with autoinhibitory motif variation as a mechanism to regulate protein interaction networks.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/genética , Processamento Alternativo , Endocitose/genética , Éxons/genética , Proteínas Adaptadoras de Transporte Vesicular/química , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Animais , Células Cultivadas , Regulação da Expressão Gênica , Camundongos Knockout , Neurônios/citologia , Neurônios/metabolismo , Ligação Proteica , Conformação Proteica , Mapas de Interação de Proteínas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transmissão Sináptica , Domínios de Homologia de src
9.
Biophys J ; 116(3): 406-418, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30558886

RESUMO

Based on our recent finding that FBP21 regulates human Brr2 helicase activity involved in the activation of the spliceosomal B-complex, we investigated the structural and dynamic contribution of FBP21 to the interaction. By using NMR spectroscopy, we could show that the 50 C-terminal residues of FBP21 (FBP21326-376), which are sufficient to fully form the interaction with the C-terminal Sec63 unit of Brr2 (Brr2C-Sec63), adopt a random-coil conformation in their unbound state. Upon interaction with Brr2C-Sec63, 42 residues of FBP21326-376 cover the large binding site on Brr2C-Sec63 in an extended conformation. Short charged motifs are steering complex formation, still allowing the bound state to retain dynamics. Based on fragment docking in combination with experimental restraints, we present models of the complex structure. The FBP21326-376/Brr2C-Sec63 interaction thus presents an example of an intrinsically disordered protein/ordered-protein interaction in which a large binding site provides high specificity and, in combination with conformational disorder, displays a relatively high affinity.


Assuntos
Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Humanos , Simulação de Acoplamento Molecular , Domínios Proteicos , Termodinâmica
10.
Biophys J ; 114(4): 788-799, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29490241

RESUMO

Precursor messenger RNA splicing is mediated by the spliceosome, a large and dynamic molecular machine composed of five small nuclear RNAs and numerous proteins. Many spliceosomal proteins are predicted to be intrinsically disordered or contain large disordered regions, but experimental validation of these predictions is scarce, and the precise functions of these proteins are often unclear. Here, we show via circular dichroism spectroscopy, dynamic light scattering, and NMR spectroscopy that the yeast spliceosomal disassembly factor Ntr2 is largely intrinsically disordered. Peptide SPOT analyses, analytical size-exclusion chromatography, and surface plasmon resonance measurements revealed that Ntr2 uses an N-terminal region to bind the C-terminal helicase unit of the Brr2 RNA helicase, an enzyme involved in spliceosome activation and implicated in splicing catalysis and spliceosome disassembly. NMR analyses suggested that Ntr2 does not adopt a tertiary structure and likely remains disordered upon complex formation. RNA binding and unwinding studies showed that Ntr2 downregulates Brr2 helicase activity in vitro by modulating the fraction of helicase molecules productively bound to the RNA substrate. Our data clarify the nature of a physical link between Brr2 and Ntr2, and point to the possibility of a functional Ntr2-Brr2 interplay during splicing.


Assuntos
Proteínas Intrinsicamente Desordenadas/metabolismo , RNA Helicases/metabolismo , RNA Fúngico/metabolismo , RNA Nuclear Pequeno/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Catálise , Proteínas Intrinsicamente Desordenadas/química , RNA Helicases/química , Proteínas de Saccharomyces cerevisiae/química
11.
Nucleic Acids Res ; 45(13): 7922-7937, 2017 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-28838205

RESUMO

Splicing of eukaryotic pre-mRNA is carried out by the spliceosome, which assembles stepwise on each splicing substrate. This requires the concerted action of snRNPs and non-snRNP accessory proteins, the functions of which are often not well understood. Of special interest are B complex factors that enter the spliceosome prior to catalytic activation and may alter splicing kinetics and splice site selection. One of these proteins is FBP21, for which we identified several spliceosomal binding partners in a yeast-two-hybrid screen, among them the RNA helicase Brr2. Biochemical and biophysical analyses revealed that an intrinsically disordered region of FBP21 binds to an extended surface of the C-terminal Sec63 unit of Brr2. Additional contacts in the C-terminal helicase cassette are required for allosteric inhibition of Brr2 helicase activity. Furthermore, the direct interaction between FBP21 and the U4/U6 di-snRNA was found to reduce the pool of unwound U4/U6 di-snRNA. Our results suggest FBP21 as a novel key player in the regulation of Brr2.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas Nucleares/metabolismo , RNA Helicases/metabolismo , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Regulação Alostérica , Sequência de Aminoácidos , Proteínas de Transporte/química , Proteínas de Transporte/genética , Humanos , Modelos Moleculares , Proteínas Nucleares/química , Proteínas Nucleares/genética , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , RNA Helicases/química , RNA Helicases/genética , Precursores de RNA/metabolismo , Splicing de RNA , RNA Nuclear Pequeno/metabolismo , Proteínas de Ligação a RNA , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Spliceossomos/metabolismo , Técnicas do Sistema de Duplo-Híbrido
12.
Front Immunol ; 8: 292, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28367149

RESUMO

Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.

13.
J Nucl Med ; 58(6): 1003-1008, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28209904

RESUMO

The immune system plays a crucial role in many diseases. Activation or suppression of immunity is often related to clinical outcome. Methods to explore the dynamics of immune responses are important to elucidate their role in conditions characterized by inflammation, such as infectious disease, cancer, or autoimmunity. Immuno-PET is a noninvasive method by which disease and immune cell infiltration can be explored simultaneously. Using radiolabeled antibodies or fragments derived from them, it is possible to image disease-specific antigens and immune cell subsets. Methods: We developed a method to noninvasively image human immune responses in a relevant humanized mouse model. We generated a camelid-derived single-domain antibody specific for human class II major histocompatibility complex products and used it to noninvasively image human immune cell reconstitution in nonobese diabetic severe combined immune deficiency γ-/- mice reconstituted with human fetal thymus, liver, and liver-derived hematopoietic stem cells (BLT mice). Results: We showed imaging of infiltrating immunocytes in BLT mice that spontaneously developed a graft-versus-host-like condition, characterized by alopecia and blepharitis. In diseased animals, we showed an increased PET signal in the liver, attributable to infiltration of activated class II major histocompatibility complex+ T cells. Conclusion: Noninvasive imaging of immune infiltration and activation could thus be of importance for diagnosis and evaluation of treatment of graft-versus-host disease and holds promise for other diseases characterized by inflammation.


Assuntos
Doença Enxerto-Hospedeiro/diagnóstico por imagem , Doença Enxerto-Hospedeiro/imunologia , Imunidade Inata/imunologia , Tomografia por Emissão de Pósitrons/métodos , Anticorpos de Domínio Único/imunologia , Linfócitos T/imunologia , Animais , Antígenos de Histocompatibilidade Classe II/imunologia , Humanos , Camundongos , Camundongos Knockout , Compostos Radiofarmacêuticos/imunologia
14.
Mol Cell Biol ; 37(7)2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-28052935

RESUMO

The ß2-integrin lymphocyte function-associated antigen 1 (LFA-1) is needed for the T cell receptor (TCR)-induced activation of LFA-1 to promote T cell adhesion and interaction with antigen-presenting cells (APCs). LFA-1-mediated cell-cell interactions are critical for proper T cell differentiation and proliferation. The Src kinase-associated phosphoprotein of 55 kDa (SKAP55) is a key regulator of TCR-mediated LFA-1 signaling (inside-out/outside-in signaling). To gain an understanding of how SKAP55 controls TCR-mediated LFA-1 activation, we assessed the functional role of its pleckstrin homology (PH) domain. We identified two critical amino acid residues within the PH domain of SKAP55, aspartic acid 120 (D120) and lysine 152 (K152). D120 facilitates the retention of SKAP55 in the cytoplasm of nonstimulated T cells, while K152 promotes SKAP55 membrane recruitment via actin binding upon TCR triggering. Importantly, the K152-dependent interaction of the PH domain with actin promotes the binding of talin to LFA-1, thus facilitating LFA-1 activation. These data suggest that K152 and D120 within the PH domain of SKAP55 regulate plasma membrane targeting and TCR-mediated activation of LFA-1.


Assuntos
Ácido Aspártico/metabolismo , Membrana Celular/metabolismo , Antígeno-1 Associado à Função Linfocitária/metabolismo , Lisina/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Linfócitos T/metabolismo , Actinas/metabolismo , Adesão Celular , Humanos , Células Jurkat , Lipídeos/química , Proteínas Mutantes/metabolismo , Mutação/genética , Fosfatos de Fosfatidilinositol/metabolismo , Domínios Proteicos , Receptores de Antígenos de Linfócitos T/metabolismo , Relação Estrutura-Atividade , Talina/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo
15.
Nat Commun ; 7: 13224, 2016 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-27827392

RESUMO

The presentation of peptide-MHCII complexes (pMHCIIs) for surveillance by T cells is a well-known immunological concept in vertebrates, yet the conformational dynamics of antigen exchange remain elusive. By combining NMR-detected H/D exchange with Markov modelling analysis of an aggregate of 275 microseconds molecular dynamics simulations, we reveal that a stable pMHCII spontaneously samples intermediate conformations relevant for peptide exchange. More specifically, we observe two major peptide exchange pathways: the kinetic stability of a pMHCII's ground state defines its propensity for intrinsic peptide exchange, while the population of a rare, intermediate conformation correlates with the propensity of the HLA-DM-catalysed pathway. Helix-destabilizing mutants designed based on our model shift the exchange behaviour towards the HLA-DM-catalysed pathway and further allow us to conceptualize how allelic variation can shape an individual's MHC restricted immune response.


Assuntos
Apresentação de Antígeno/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Peptídeos/imunologia , Linfócitos T/imunologia , Animais , Antígenos HLA-D/química , Antígenos HLA-D/imunologia , Antígenos HLA-D/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Cinética , Espectroscopia de Ressonância Magnética , Simulação de Dinâmica Molecular , Peptídeos/química , Peptídeos/metabolismo , Conformação Proteica , Linfócitos T/metabolismo
16.
Open Biol ; 6(8)2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27534821

RESUMO

Classical MHC class II (MHCII) proteins present peptides for CD4(+) T-cell surveillance and are by far the most prominent risk factor for a number of autoimmune disorders. To date, many studies have shown that this link between particular MHCII alleles and disease depends on the MHCII's particular ability to bind and present certain peptides in specific physiological contexts. However, less attention has been paid to the non-classical MHCII molecule human leucocyte antigen-DM, which catalyses peptide exchange on classical MHCII proteins acting as a peptide editor. DM function impacts the presentation of both antigenic peptides in the periphery and key self-peptides during T-cell development in the thymus. In this way, DM activity directly influences the response to pathogens, as well as mechanisms of self-tolerance acquisition. While decreased DM editing of particular MHCII proteins has been proposed to be related to autoimmune disorders, no experimental evidence for different DM catalytic properties had been reported until recently. Biochemical and structural investigations, together with new animal models of loss of DM activity, have provided an attractive foundation for identifying different catalytic efficiencies for DM allotypes. Here, we revisit the current knowledge of DM function and discuss how DM function may impart autoimmunity at the organism level.


Assuntos
Doenças Autoimunes/genética , Antígenos HLA-D/genética , Polimorfismo de Nucleotídeo Único , Animais , Apresentação de Antígeno , Edição de Genes , Predisposição Genética para Doença , Humanos
17.
Mol Cell Proteomics ; 14(11): 2961-72, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26246585

RESUMO

Stimulation of T cells leads to distinct changes of their adhesive and migratory properties. Signal propagation from activated receptors to integrins depends on scaffolding proteins such as the adhesion and degranulation promoting adaptor protein (ADAP)(1). Here we have comprehensively investigated the phosphotyrosine interactome of ADAP in T cells and define known and novel interaction partners of functional relevance. While most phosphosites reside in unstructured regions of the protein, thereby defining classical SH2 domain interaction sites for master regulators of T cell signaling such as SLP76, Fyn-kinase, and NCK, other binding events depend on structural context. Interaction proteomics using different ADAP constructs comprising most of the known phosphotyrosine motifs as well as the structured domains confirm that a distinct set of proteins is attracted by pY571 of ADAP, including the ζ-chain-associated protein kinase of 70 kDa (ZAP70). The interaction of ADAP and ZAP70 is inducible upon stimulation either of the T cell receptor (TCR) or by chemokine. NMR spectroscopy reveals that the N-terminal SH2 domains within a ZAP70-tandem-SH2 construct is the major site of interaction with phosphorylated ADAP-hSH3(N) and microscale thermophoresis (MST) indicates an intermediate binding affinity (Kd = 2.3 µm). Interestingly, although T cell receptor dependent events such as T cell/antigen presenting cell (APC) conjugate formation and adhesion are not affected by mutation of Y571, migration of T cells along a chemokine gradient is compromised. Thus, although most phospho-sites in ADAP are linked to T cell receptor related functions we have identified a unique phosphotyrosine that is solely required for chemokine induced T cell behavior.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Quimiocina CXCL12/farmacologia , Linfócitos T/efeitos dos fármacos , Proteína-Tirosina Quinase ZAP-70/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Sítios de Ligação , Adesão Celular/efeitos dos fármacos , Degranulação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Quimiocina CXCL12/genética , Quimiocina CXCL12/imunologia , Expressão Gênica , Humanos , Células Jurkat , Cinética , Modelos Moleculares , Fosforilação/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Mapeamento de Interação de Proteínas , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Linfócitos T/citologia , Linfócitos T/imunologia , Tirosina/metabolismo , Proteína-Tirosina Quinase ZAP-70/imunologia
18.
J Immunol ; 194(2): 803-16, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25505276

RESUMO

During the adaptive immune response, MHCII proteins display antigenic peptides on the cell surface of APCs for CD4(+) T cell surveillance. HLA-DM, a nonclassical MHCII protein, acts as a peptide exchange catalyst for MHCII, editing the peptide repertoire. Although they map to the same gene locus, MHCII proteins exhibit a high degree of polymorphism, whereas only low variability has been observed for HLA-DM. As HLA-DM activity directly favors immunodominant peptide presentation, polymorphisms in HLA-DM (DMA or DMB chain) might well be a contributing risk factor for autoimmunity and immune disorders. Our systematic comparison of DMA*0103/DMB*0101 (DMA-G155A and DMA-R184H) with DMA*0101/DMB*0101 in terms of catalyzed peptide exchange and dissociation, as well as direct interaction with several HLA-DR/peptide complexes, reveals an attenuated catalytic activity of DMA*0103/DMB*0101. The G155A substitution dominates the catalytic behavior of DMA*0103/DMB*0101 by decreasing peptide release velocity. Preloaded peptide-MHCII complexes exhibit ∼2-fold increase in half-life in the presence of DMA*0103/DMB*0101 when compared with DMA*0101/DMB*0101. We show that this effect leads to a greater persistence of autoimmunity-related Ags in the presence of high-affinity competitor peptide. Our study therefore reveals that HLA-DM polymorphic residues have a considerable impact on HLA-DM catalytic activity.


Assuntos
Apresentação de Antígeno , Células Apresentadoras de Antígenos/imunologia , Autoantígenos , Antígenos HLA-D , Antígenos HLA-DR , Peptídeos , Polimorfismo Genético/imunologia , Apresentação de Antígeno/genética , Apresentação de Antígeno/imunologia , Autoantígenos/genética , Autoantígenos/imunologia , Antígenos HLA-D/genética , Antígenos HLA-D/imunologia , Antígenos HLA-DR/genética , Antígenos HLA-DR/imunologia , Células HeLa , Humanos , Peptídeos/genética , Peptídeos/imunologia
19.
J Biol Chem ; 289(34): 23449-64, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25002586

RESUMO

HLA-DM mediates the exchange of peptides loaded onto MHCII molecules during antigen presentation by a mechanism that remains unclear and controversial. Here, we investigated the sequence and structural determinants of HLA-DM interaction. Peptides interacting nonoptimally in the P1 pocket exhibited low MHCII binding affinity and kinetic instability and were highly susceptible to HLA-DM-mediated peptide exchange. These changes were accompanied by conformational alterations detected by surface plasmon resonance, SDS resistance assay, antibody binding assay, gel filtration, dynamic light scattering, small angle x-ray scattering, and NMR spectroscopy. Surprisingly, all of those changes could be reversed by substitution of the P9 pocket anchor residue. Moreover, MHCII mutations outside the P1 pocket and the HLA-DM interaction site increased HLA-DM susceptibility. These results indicate that a dynamic MHCII conformational determinant rather than P1 pocket occupancy is the key factor determining susceptibility to HLA-DM-mediated peptide exchange and provide a molecular mechanism for HLA-DM to efficiently target unstable MHCII-peptide complexes for editing and exchange those for more stable ones.


Assuntos
Epitopos/imunologia , Antígenos HLA-D/imunologia , Peptídeos/imunologia , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Ensaio de Imunoadsorção Enzimática , Epitopos/química , Antígenos HLA-D/química , Humanos , Ligação de Hidrogênio , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Ressonância Magnética Nuclear Biomolecular , Peptídeos/química
20.
J Mol Biol ; 423(3): 294-302, 2012 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-22820093

RESUMO

Class II proteins of the major histocompatibility complex (MHCII) typically present exogenous antigenic peptides to cognate T cell receptors of CD4-T lymphocytes. The exact conformation of peptide-MHCII complexes (pMHCII) can vary depending on the length, register and orientation of the bound peptide. We have recently found the self-peptide CLIP (class-II-associated invariant chain-derived peptide) to adopt a dynamic bidirectional binding mode with regard to the human MHCII HLA-DR1 (HLA, human leukocyte antigen). We suggested that inversely bound peptides could activate specific T cell clones in the context of autoimmunity. As a first step to prove this hypothesis, pMHC complexes restricted to either the canonical or the inverted peptide orientation have to be constructed. Here, we show that genetically encoded linkage of CLIP and two other antigenic peptides to the HLA-DR1 α-chain results in stable complexes with inversely bound ligands. Two-dimensional NMR and biophysical analyses indicate that the CLIP-bound pMHC(inv) complex (pMHC(inv), inverted MHCII-peptide complex) displays high thermodynamic stability but still allows for the exchange against higher-affinity viral antigen. Complemented by comparable data on a corresponding ß-chain-fused canonical HLA-DR1/CLIP complex, we further show that linkage of CLIP leads to a binding mode exactly the same as that of the corresponding unlinked constructs. We suggest that our approach constitutes a general strategy to create pMHC(inv) complexes. Such engineering is needed to create orientation-specific antibodies and raise T cells to study phenomena of autoimmunity caused by isomeric pMHCs.


Assuntos
Apresentação de Antígeno , Antígenos de Diferenciação de Linfócitos B , Antígeno HLA-DR1 , Antígenos de Histocompatibilidade Classe II , Sequência de Aminoácidos , Antígenos de Diferenciação de Linfócitos B/química , Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Diferenciação de Linfócitos B/metabolismo , Autoimunidade , Linfócitos T CD4-Positivos/imunologia , Cristalografia por Raios X , Genes MHC da Classe II , Antígeno HLA-DR1/química , Antígeno HLA-DR1/imunologia , Antígeno HLA-DR1/metabolismo , Antígenos de Histocompatibilidade Classe II/química , Antígenos de Histocompatibilidade Classe II/imunologia , Antígenos de Histocompatibilidade Classe II/metabolismo , Humanos , Ligantes , Ligação Proteica , Conformação Proteica , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Toxina Tetânica/química , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA