Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Adv ; 10(18): eadn3448, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38701211

RESUMO

Despite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking. Here, we present an integrated microfluidic-based workflow that mimics extracellular pH gradients characteristic of solid tumors while enabling high-resolution live imaging of, e.g., cell motility and chemotaxis, and preserving the capacity to capture the spatial transcriptome. Our microfluidic device generates a pH gradient that can be rapidly controlled to mimic spatiotemporal microenvironmental changes over cancer cells embedded in a 3D matrix. The device can be reopened allowing immunofluorescence analysis of selected phenotypes, as well as the transfer of cells and matrix to a Visium slide for spatially resolved analysis of transcriptional changes across the pH gradient. This workflow is easily adaptable to other gradients and multiple cell types and can therefore prove invaluable for integrated analysis of roles of microenvironmental gradients in biology.


Assuntos
Neoplasias , Fenótipo , Microambiente Tumoral , Humanos , Neoplasias/patologia , Neoplasias/metabolismo , Neoplasias/genética , Linhagem Celular Tumoral , Movimento Celular , Concentração de Íons de Hidrogênio , Quimiotaxia , Técnicas Analíticas Microfluídicas
2.
Int J Cancer ; 152(6): 1210-1225, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36408933

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is an extremely aggressive malignancy with minimal treatment options and a global rise in prevalence. PDAC is characterized by frequent driver mutations including KRAS and TP53 (p53), and a dense, acidic tumor microenvironment (TME). The relation between genotype and TME in PDAC development is unknown. Strikingly, when wild type (WT) Panc02 PDAC cells were adapted to growth in an acidic TME and returned to normal pH to mimic invasive cells escaping acidic regions, they displayed a strong increase of aggressive traits such as increased growth in 3-dimensional (3D) culture, adhesion-independent colony formation and invasive outgrowth. This pattern of acidosis-induced aggressiveness was observed in 3D spheroid culture as well as upon organotypic growth in matrigel, collagen-I and combination thereof, mimicking early and later stages of PDAC development. Acid-adaptation-induced gain of cancerous traits was further increased by p53 knockout (KO), but only in specific extracellular matrix (ECM) compositions. Akt- and Transforming growth factor-ß (TGFß) signaling, as well as expression of the Na+ /H+ exchanger NHE1, were increased by acid adaptation. Whereas Akt inhibition decreased spheroid growth regardless of treatment and genotype, stimulation with TGFßI increased growth of WT control spheroids, and inhibition of TGFß signaling tended to limit growth under acidic conditions only. Our results indicate that a complex crosstalk between tumor acidosis, ECM composition and genotype contributes to PDAC development. The findings may guide future strategies for acidosis-targeted therapies.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/patologia , Linhagem Celular Tumoral , Matriz Extracelular/metabolismo , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Microambiente Tumoral , Proteína Supressora de Tumor p53/genética , Neoplasias Pancreáticas
3.
iScience ; 25(7): 104683, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35856019

RESUMO

Coordinating growth and patterning is essential for eukaryote morphogenesis. In plants, auxin is a key regulator of morphogenesis implicated throughout development. Despite this central role, our understanding of how auxin coordinates cell fate and growth changes is still limited. Here, we addressed this question using a combination of genomic screens to delve into the transcriptional network induced by auxin at the earliest stage of flower development, prior to morphological changes. We identify a shoot-specific network suggesting that auxin initiates growth through an antagonistic regulation of growth-promoting and growth-repressive hormones, quasi-synchronously to floral fate specification. We further identify two DNA-binding One Zinc Finger (DOF) transcription factors acting in an auxin-dependent network that could interface growth and cell fate from the early stages of flower development onward.

4.
Mol Plant ; 14(5): 829-837, 2021 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-33684542

RESUMO

Pioneer transcription factors (TFs) are a special category of TFs with the capacity to bind to closed chromatin regions in which DNA is wrapped around histones and may be highly methylated. Subsequently, pioneer TFs are able to modify the chromatin state to initiate gene expression. In plants, LEAFY (LFY) is a master floral regulator and has been suggested to act as a pioneer TF in Arabidopsis. Here, we demonstrate that LFY is able to bind both methylated and non-methylated DNA using a combination of in vitro genome-wide binding experiments and structural modeling. Comparisons between regions bound by LFY in vivo and chromatin accessibility data suggest that a subset of LFY bound regions is occupied by nucleosomes. We confirm that LFY is able to bind nucleosomal DNA in vitro using reconstituted nucleosomes. Finally, we show that constitutive LFY expression in seedling tissues is sufficient to induce chromatin accessibility in the LFY direct target genes APETALA1 and AGAMOUS. Taken together, our study suggests that LFY possesses key pioneer TF features that contribute to launching the floral gene expression program.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/citologia , Flores/citologia , Plântula/genética , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas , Histonas/metabolismo , Nucleossomos/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
5.
Nature ; 589(7840): 116-119, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33208947

RESUMO

The regulation of signalling capacity, combined with the spatiotemporal distribution of developmental signals themselves, is pivotal in setting developmental responses in both plants and animals1. The hormone auxin is a key signal for plant growth and development that acts through the AUXIN RESPONSE FACTOR (ARF) transcription factors2-4. A subset of these, the conserved class A ARFs5, are transcriptional activators of auxin-responsive target genes that are essential for regulating auxin signalling throughout the plant lifecycle2,3. Although class A ARFs have tissue-specific expression patterns, how their expression is regulated is unknown. Here we show, by investigating chromatin modifications and accessibility, that loci encoding these proteins are constitutively open for transcription. Through yeast one-hybrid screening, we identify the transcriptional regulators of the genes encoding class A ARFs from Arabidopsis thaliana and demonstrate that each gene is controlled by specific sets of transcriptional regulators. Transient transformation assays and expression analyses in mutants reveal that, in planta, the majority of these regulators repress the transcription of genes encoding class A ARFs. These observations support a scenario in which the default configuration of open chromatin enables a network of transcriptional repressors to regulate expression levels of class A ARF proteins and modulate auxin signalling output throughout development.


Assuntos
Arabidopsis/genética , Arabidopsis/metabolismo , Regulação para Baixo , Regulação da Expressão Gênica de Plantas , Redes Reguladoras de Genes , Ácidos Indolacéticos/metabolismo , Proteínas Repressoras/metabolismo , Transcrição Gênica , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , Cromatina/metabolismo , Genes de Plantas/genética , Mutação , Proteínas Repressoras/genética , Técnicas do Sistema de Duplo-Híbrido
7.
Nucleic Acids Res ; 48(17): 9637-9648, 2020 09 25.
Artigo em Inglês | MEDLINE | ID: mdl-32890394

RESUMO

The MADS transcription factors (TF), SEPALLATA3 (SEP3) and AGAMOUS (AG) are required for floral organ identity and floral meristem determinacy. While dimerization is obligatory for DNA binding, SEP3 and SEP3-AG also form tetrameric complexes. How homo and hetero-dimerization and tetramerization of MADS TFs affect genome-wide DNA-binding and gene regulation is not known. Using sequential DNA affinity purification sequencing (seq-DAP-seq), we determined genome-wide binding of SEP3 homomeric and SEP3-AG heteromeric complexes, including SEP3Δtet-AG, a complex with a SEP3 splice variant, SEP3Δtet, which is largely dimeric and SEP3-AG tetramer. SEP3 and SEP3-AG share numerous bound regions, however each complex bound unique sites, demonstrating that protein identity plays a role in DNA-binding. SEP3-AG and SEP3Δtet-AG share a similar genome-wide binding pattern; however the tetrameric form could access new sites and demonstrated a global increase in DNA-binding affinity. Tetramerization exhibited significant cooperative binding with preferential distances between two sites, allowing efficient binding to regions that are poorly recognized by dimeric SEP3Δtet-AG. By intersecting seq-DAP-seq with ChIP-seq and expression data, we identified unique target genes bound either in SEP3-AG seq-DAP-seq or in SEP3/AG ChIP-seq. Seq-DAP-seq is a versatile genome-wide technique and complements in vivo methods to identify putative direct regulatory targets.


Assuntos
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Homeodomínio/metabolismo , Análise de Sequência de DNA/métodos , Fatores de Transcrição/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Sítios de Ligação , Proteínas de Transporte/genética , DNA de Plantas/genética , DNA de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Proteínas de Homeodomínio/genética , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Multimerização Proteica , Fatores de Transcrição/genética
8.
Mol Plant ; 12(6): 743-763, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30447332

RESUMO

Transcription factors (TFs) are key cellular components that control gene expression. They recognize specific DNA sequences, the TF binding sites (TFBSs), and thus are targeted to specific regions of the genome where they can recruit transcriptional co-factors and/or chromatin regulators to fine-tune spatiotemporal gene regulation. Therefore, the identification of TFBSs in genomic sequences and their subsequent quantitative modeling is of crucial importance for understanding and predicting gene expression. Here, we review how TFBSs can be determined experimentally, how the TFBS models can be constructed in silico, and how they can be optimized by taking into account features such as position interdependence within TFBSs, DNA shape, and/or by introducing state-of-the-art computational algorithms such as deep learning methods. In addition, we discuss the integration of context variables into the TFBS modeling, including nucleosome positioning, chromatin states, methylation patterns, 3D genome architectures, and TF cooperative binding, in order to better predict TF binding under cellular contexts. Finally, we explore the possibilities of combining the optimized TFBS model with technological advances, such as targeted TFBS perturbation by CRISPR, to better understand gene regulation, evolution, and plant diversity.


Assuntos
Fatores de Transcrição/metabolismo , Algoritmos , Sítios de Ligação , Biologia Computacional/métodos , Flores/metabolismo , Regulação da Expressão Gênica/fisiologia , Ligação Proteica
9.
Mol Plant ; 12(6): 822-832, 2019 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-30336329

RESUMO

Auxin is a key hormone performing a wealth of functions throughout the life cycle of plants. It acts largely by regulating genes at the transcriptional level through a family of transcription factors called auxin response factors (ARFs). Even though all ARF monomers analyzed so far bind a similar DNA sequence, there is evidence that ARFs differ in their target genomic regions and regulated genes. Here, we report the use of position weight matrices (PWMs) to model ARF DNA binding specificity based on published DNA affinity purification sequencing (DAP-seq) data. We found that the genome binding of two ARFs (ARF2 and ARF5/Monopteros [MP]) differ largely because these two factors have different preferred ARF binding site (ARFbs) arrangements (orientation and spacing). We illustrated why PWMs are more versatile to reliably identify ARFbs than the widely used consensus sequences and demonstrated their power with biochemical experiments in the identification of the regulatory regions of IAA19, an well-characterized auxin-responsive gene. Finally, we combined gene regulation by auxin with ARF-bound regions and identified specific ARFbs configurations that are over-represented in auxin-upregulated genes, thus deciphering the ARFbs syntax functional for regulation. Our study provides a general method to exploit the potential of genome-wide DNA binding assays and to decode gene regulation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Ácidos Indolacéticos/metabolismo , Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
10.
Nucleic Acids Res ; 46(10): 4966-4977, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29562355

RESUMO

The MADS transcription factors (TF) constitute an ancient family of TF found in all eukaryotes that bind DNA as obligate dimers. Plants have dramatically expanded the functional diversity of the MADS family during evolution by adding protein-protein interaction domains to the core DNA-binding domain, allowing the formation of heterotetrameric complexes. Tetramerization of plant MADS TFs is believed to play a central role in the evolution of higher plants by acting as one of the main determinants of flower formation and floral organ specification. The MADS TF, SEPALLATA3 (SEP3), functions as a central protein-protein interaction hub, driving tetramerization with other MADS TFs. Here, we use a SEP3 splice variant, SEP3Δtet, which has dramatically abrogated tetramerization capacity to decouple SEP3 tetramerization and DNA-binding activities. We unexpectedly demonstrate that SEP3 heterotetramer formation is required for correct termination of the floral meristem, but plays a lesser role in floral organogenesis. The heterotetramer formed by SEP3 and the MADS protein, AGAMOUS, is necessary to activate two target genes, KNUCKLES and CRABSCLAW, which are required for meristem determinacy. These studies reveal unique and highly specific roles of tetramerization in flower development and suggest tetramerization may be required to activate only a subset of target genes in closed chromatin regions.


Assuntos
Proteína AGAMOUS de Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/fisiologia , Flores/fisiologia , Proteínas de Homeodomínio/metabolismo , Meristema/fisiologia , Fatores de Transcrição/metabolismo , Proteína AGAMOUS de Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Transporte/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Homeodomínio/genética , Mutação , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas , Multimerização Proteica , Fatores de Transcrição/genética
12.
Nucleic Acids Res ; 46(D1): D260-D266, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29140473

RESUMO

JASPAR (http://jaspar.genereg.net) is an open-access database of curated, non-redundant transcription factor (TF)-binding profiles stored as position frequency matrices (PFMs) and TF flexible models (TFFMs) for TFs across multiple species in six taxonomic groups. In the 2018 release of JASPAR, the CORE collection has been expanded with 322 new PFMs (60 for vertebrates and 262 for plants) and 33 PFMs were updated (24 for vertebrates, 8 for plants and 1 for insects). These new profiles represent a 30% expansion compared to the 2016 release. In addition, we have introduced 316 TFFMs (95 for vertebrates, 218 for plants and 3 for insects). This release incorporates clusters of similar PFMs in each taxon and each TF class per taxon. The JASPAR 2018 CORE vertebrate collection of PFMs was used to predict TF-binding sites in the human genome. The predictions are made available to the scientific community through a UCSC Genome Browser track data hub. Finally, this update comes with a new web framework with an interactive and responsive user-interface, along with new features. All the underlying data can be retrieved programmatically using a RESTful API and through the JASPAR 2018 R/Bioconductor package.


Assuntos
Bases de Dados Genéticas , Fatores de Transcrição/metabolismo , Animais , Sítios de Ligação/genética , Genômica , Humanos , Internet , Plantas/genética , Plantas/metabolismo , Matrizes de Pontuação de Posição Específica , Ligação Proteica/genética , Interface Usuário-Computador , Vertebrados/genética , Vertebrados/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA