RESUMO
The risk of zoonotic disease transmission from animals to humans is elevated for people in close contact with domestic and wild animals. About three-quarters of all known human infectious diseases are zoonotic, and potential health impacts of these diseases are higher where infectious disease surveillance and access to health care and public health services are limited. This is especially the case for remote circumarctic regions, where drivers for endemic, emerging, and re-emerging zoonotic diseases include anthropogenic influences, such as pollution by long-range transport of industrial chemicals, climate change, loss of biodiversity and ecosystem alterations. In addition to these, indirect effects including natural changes in food web dynamics, appearance of invasive species, thawing permafrost also affect the risk of zoonotic disease spill-over. In other words, the Arctic represents a changing world where pollution, loss of biodiversity and habitat, and maritime activity are likely driving forward occurrence of infectious diseases. As a broad international consortium with a wide range of expertise, we here describe a selection of case studies highlighting the importance of a One Health approach to zoonoses in the circumarctic, encompassing human health, animal health, and environmental health aspects. The cases highlight critical gaps in monitoring and current knowledge, focusing on environmental stressors and lifestyle factors, and they are examples of current occurrences in the Arctic that inform on critically needed actions to prepare us for the future. Through these presentations, we recommend measures to enhance awareness and management of existing and emerging zoonoses with epidemic and pandemic potential while also focusing on the impacts of various environmental stressors and lifestyle factors on zoonoses in the Arctic.
RESUMO
The ongoing panzootic of highly pathogenic H5 clade 2.3.4.4b avian influenza (HPAI) spread to North America in late 2021, with detections of HPAI viruses in Alaska beginning in April 2022. HPAI viruses have since spread across the state, affecting many species of wild birds as well as domestic poultry and wild mammals. To better understand the dissemination of HPAI viruses spatiotemporally and among hosts in Alaska and adjacent regions, we compared the genomes of 177 confirmed HPAI viruses detected in Alaska during April-December 2022. Results suggest multiple viral introductions into Alaska between November 2021 and August or September 2022, as well as dissemination to areas within and outside of the state. Viral genotypes differed in their spatiotemporal spread, likely influenced by timing of introductions relative to population immunity. We found evidence for dissemination of HPAI viruses between wild bird species, wild birds and domestic poultry, as well as wild birds and wild mammals. Continued monitoring for and genomic characterization of HPAI viruses in Alaska can improve our understanding of the evolution and dispersal of these economically costly and ecologically relevant pathogens.
Assuntos
Animais Selvagens , Aves , Genoma Viral , Genótipo , Influenza Aviária , Filogenia , Animais , Influenza Aviária/virologia , Influenza Aviária/epidemiologia , Alaska/epidemiologia , Aves/virologia , Animais Selvagens/virologia , Aves Domésticas/virologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/classificação , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Genômica , Análise Espaço-Temporal , Mamíferos/virologia , Vírus da Influenza A/genética , Vírus da Influenza A/classificação , Vírus da Influenza A/isolamento & purificação , Vírus da Influenza A/patogenicidadeRESUMO
Wolverines are facultative scavengers that feed near the top of terrestrial food chains. We characterized concentrations of mercury and other trace elements in tissues of wolverine from a broad geographic area, representing much of their contemporary distribution in northwestern North America. We obtained tissues from 504 wolverines, from which mercury was measured on muscle (n = 448), kidney (n = 222), liver (n = 148), hair (n = 130), and brain (n = 52). In addition, methylmercury, seven trace elements (arsenic, cadmium, chromium, cobalt, lead, nickel, selenium), and arsenic compounds were measured on a subset of samples. Concentrations of mercury and other trace elements varied between tissues and were generally highest in kidney compared to brain, liver and muscle. Mercury was predominately as methylmercury in brain and muscle, but largely as inorganic mercury in liver and kidney. Mercury concentrations of hair were moderately correlated with those of internal tissues (Pearson r = 0.51-0.75, p ≤ 0.004), making hair a good non-lethal indicator of broad spatial or temporal differences in mercury exposure to wolverine. Arsenobetaine was the dominant arsenic compound identified in tissues, and arsenite, arsenocholine and dimethylarsinic acid were also detected. A preliminary risk assessment suggested the cadmium, lead, mercury, and selenium concentrations in our sample of wolverines were not likely to pose a risk of overt toxicological effects. This study generated a comprehensive dataset on mercury and other trace elements in wolverine, which will support future contaminants study of this northern terrestrial carnivore.
Assuntos
Cabelo , Mercúrio , Animais , Mercúrio/análise , Medição de Risco , Distribuição Tecidual , Cabelo/química , Monitoramento Ambiental , Rim , Poluentes Ambientais/análise , Oligoelementos/análise , Fígado/química , Mustelidae , Compostos de Metilmercúrio/análiseRESUMO
We report a natural infection with a Eurasian highly pathogenic avian influenza A(H5N1) clade 2.3.4.4b virus in a free-ranging juvenile polar bear (Ursus maritimus) found dead in North Slope Borough, Alaska, USA. Continued community and hunter-based participation in wildlife health surveillance is key to detecting emerging pathogens in the Arctic.
Assuntos
Virus da Influenza A Subtipo H5N1 , Filogenia , Ursidae , Animais , Ursidae/virologia , Alaska/epidemiologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/isolamento & purificação , Virus da Influenza A Subtipo H5N1/patogenicidade , Animais Selvagens/virologia , Infecções por Orthomyxoviridae/veterinária , Infecções por Orthomyxoviridae/virologiaRESUMO
We describe here a novel peeling skin condition (PSC) in 2 neonatal Pacific walruses (Odobenus rosmarus subsp. divergens). Macroscopically, calves had various degrees of peeling skin exacerbated by mechanical trauma. Lesions occurred in areas subject to friction: ventrum, fore- and hindflippers, and associated joints. Histopathologic features included pseudocarcinomatous epithelial hyperplasia with orthokeratotic hyperkeratosis. Bacterial cocci were present within the stratum corneum. A few intraepidermal clefts were present. Inflammation, epidermolysis, and vasculopathies were not observed. PCR assays were negative for vesivirus and for Staphylococcus aureus exfoliative and toxic shock syndrome toxins. Tissue samples were cultured and bacteria isolated and identified by MALDI-TOF MS as Carnobacterium maltaromaticum, Psychrobacter phenylpyruvicus, Globicatella sanguinis, Streptococcus phocae, Pseudomonas spp., Rahnella aquatilis, and Escherichia coli. Given the young age of the calves and their clinical presentation, congenital ichthyosis was suspected. No genetic differences were detected for sequenced portions of keratin genes (keratin gene K10) between diseased and normal walrus skin. This rare PSC in neonatal Pacific walruses is recognized as novel by indigenous Alaskan marine mammal hunters of the Bering Strait region. A comprehensive diagnostic work-up of future case materials is needed to characterize the underlying biochemical defect(s).
Assuntos
Infecções Estafilocócicas , Morsas , Animais , Alaska , Infecções Estafilocócicas/veterinária , QueratinasRESUMO
Embryogenesis of cetaceans (whales, dolphins, porpoises) is best known in Stenella attenuata, the pan-tropical spotted dolphin, based on a remarkably complete and well-studied prenatal ontogenetic series. Our study expands understanding of cetacean embryology by adding two additional cetacean taxa: the beluga whale (Delphinapterus leucas, Odontoceti), and the bowhead whale (Balaena mysticetus, Mysticeti). We identify key features that characterize these taxa at specific stages and highlight heterochrony between the odontocetes and mysticetes. The toothed whales are more similar in developmental timing to each other than either is to Balaena. The two odontocete taxa, Stenella and Delphinapterus, share similar developmental trajectories while early Balaena specimens differ from the odontocetes. This developmental variation proves challenging to ascribe to the existing Carnegie staging system. Most notably, flippers, hindlimbs, and flukes all provide morphological traits for characterization within the Carnegie staging system. A presomitic Delphinapterus embryo is also described. This study applies the Carnegie staging system to two more cetacean taxa and forms a framework for future research on cetacean developmental genetics and the modeling of fetal growth.
Assuntos
Beluga , Baleia Franca , Golfinhos , Stenella , Animais , Cetáceos , Baleia Franca/anatomia & histologiaRESUMO
In recent decades, harmful algal blooms (HABs) producing paralytic shellfish toxins (including saxitoxin, STX) have become increasingly frequent in the marine waters of Alaska, USA, subjecting Pacific Arctic and subarctic communities and wildlife to increased toxin exposure risks. Research on the risks of HAB toxin exposures to marine mammal health commonly relies on the sampling of marine mammal gastrointestinal (GI) contents to quantify HAB toxins, yet no studies have been published testing the stability of STX in marine mammal GI matrices. An understanding of STX stability in test matrices under storage and handling conditions is imperative to the integrity of toxin quantifications and conclusions drawn thereby. Here, STX stability is characterized in field-collected bowhead whale feces (stored raw in several treatments) and in fecal extracts (50% methanol, MeOH) over multiple time points. Toxin stability, as the percent of initial concentration (T0), was reported for each storage treatment and time point. STX was stable (mean 99% T0) in 50% MeOH extracts over the 8-week study period, and there was no significant difference in STX concentrations quantified in split fecal samples extracted in 80% ethanol (EtOH) and 50% MeOH. STX was also relatively stable in raw fecal material stored in the freezer (mean 94% T0) and the refrigerator (mean 93% T0) up to 8 weeks. STX degraded over time in the room-temperature dark, room-temperature light, and warm treatments to means of 48 ± 1.9, 38 ± 2.8, and 20 ± 0.7% T0, respectively, after 8 weeks (mean ± standard error; SE). Additional opportunistically analyzed samples frozen for ≤4.5 years also showed STX to be relatively stable (mean 97% T0). Mean percent of T0 was measured slightly above 100% in some extracts following some treatments, and (most notably) at some long-term frozen time points, likely due to evaporation from samples causing STX to concentrate, or variability between ELISA plates. Overall, these results suggest that long-term frozen storage of raw fecal samples and the analysis of extracts within 8 weeks of extraction in 50% MeOH is sufficient for obtaining accurate STX quantifications in marine mammal fecal material without concerns about significant degradation.
Assuntos
Baleia Franca , Saxitoxina , Animais , Etanol , Fezes/química , Metanol , Saxitoxina/análiseRESUMO
Among emerging threats to the Arctic is the introduction, spread, or resurgence of disease. Marine brucellosis is an emerging disease concern among free-ranging cetaceans and is less well-studied than terrestrial forms. To investigate marine-origin Brucella sp. exposure in two beluga stocks in Alaska, USA, this study used serological status as well as real-time polymerase chain reaction (rtPCR) and bacterial culture. In total, 55 live-captured-released belugas were tested for Brucella exposure in Bristol Bay (2008-2016) and 112 (8 live-captured; 104 subsistence-harvested) whales were tested in the eastern Chukchi Sea (2007-2017). In total, 73% percent of Bristol Bay live captures, 50% of Chukchi Sea live captures, and 66% of Chukchi Sea harvested belugas were positive on serology. Only 10 of 69 seropositive belugas were rtPCR positive in at least one tissue. Only one seropositive animal was PCR positive in both the spleen and mesenteric lymph node. All animals tested were culture negative. The high prevalence of seropositivity detected suggests widespread exposure in both stocks, however, the low level of rtPCR and culture positive results suggests clinical brucellosis was not prevalent in the belugas surveyed. Continued detection of Brucella exposure supports the need for long-term monitoring of these and other beluga populations.
RESUMO
Arctic Indigenous Peoples are among the most exposed humans when it comes to foodborne mercury (Hg). In response, Hg monitoring and research have been on-going in the circumpolar Arctic since about 1991; this work has been mainly possible through the involvement of Arctic Indigenous Peoples. The present overview was initially conducted in the context of a broader assessment of Hg research organized by the Arctic Monitoring and Assessment Programme. This article provides examples of Indigenous Peoples' contributions to Hg monitoring and research in the Arctic, and discusses approaches that could be used, and improved upon, when carrying out future activities. Over 40 mercury projects conducted with/by Indigenous Peoples are identified for different circumpolar regions including the U.S., Canada, Greenland, Sweden, Finland, and Russia as well as instances where Indigenous Knowledge contributed to the understanding of Hg contamination in the Arctic. Perspectives and visions of future Hg research as well as recommendations are presented. The establishment of collaborative processes and partnership/co-production approaches with scientists and Indigenous Peoples, using good communication practices and transparency in research activities, are key to the success of research and monitoring activities in the Arctic. Sustainable funding for community-driven monitoring and research programs in Arctic countries would be beneficial and assist in developing more research/monitoring capacity and would promote a more holistic approach to understanding Hg in the Arctic. These activities should be well connected to circumpolar/international initiatives to ensure broader availability of the information and uptake in policy development.
Assuntos
Mercúrio , Regiões Árticas , Canadá , Groenlândia , Humanos , Povos IndígenasRESUMO
Climate change-related ocean warming and reduction in Arctic sea ice extent, duration and thickness increase the risk of toxic blooms of the dinoflagellate Alexandrium catenella in the Alaskan Arctic. This algal species produces neurotoxins that impact marine wildlife health and cause the human illness known as paralytic shellfish poisoning (PSP). This study reports Paralytic Shellfish Toxin (PST) concentrations quantified in Arctic food web samples that include phytoplankton, zooplankton, benthic clams, benthic worms, and pelagic fish collected throughout summer 2019 during anomalously warm ocean conditions. PSTs (saxitoxin equivalents, STX eq.) were detected in all trophic levels with concentrations above the seafood safety regulatory limit (80 µg STX eq. 100 g-1) in benthic clams collected offshore on the continental shelf in the Beaufort, Chukchi, and Bering Seas. Most notably, toxic benthic clams (Macoma calcarea) were found north of Saint Lawrence Island where Pacific walruses (Odobenus rosmarus) are known to forage for a variety of benthic species, including Macoma. Additionally, fecal samples collected from 13 walruses harvested for subsistence purposes near Saint Lawrence Island during March to May 2019, all contained detectable levels of STX, with fecal samples from two animals (78 and 72 µg STX eq. 100 g-1) near the seafood safety regulatory limit. In contrast, 64% of fecal samples from zooplankton-feeding bowhead whales (n = 9) harvested between March and September 2019 in coastal waters of the Beaufort Sea near Utqiagvik (formerly Barrow) and Kaktovik were toxin-positive, and those levels were significantly lower than in walruses (max bowhead 8.5 µg STX eq. 100 g-1). This was consistent with the lower concentrations of PSTs found in regional zooplankton prey. Maximum ecologically-relevant daily toxin doses to walruses feeding on clams and bowhead whales feeding on zooplankton were estimated to be 21.5 and 0.7 µg STX eq. kg body weight-1 day-1, respectively, suggesting that walruses had higher PST exposures than bowhead whales. Average and maximum STX doses in walruses were in the range reported previously to cause illness and/or death in humans and humpback whales, while bowhead whale doses were well below those levels. These findings raise concerns regarding potential increases in PST/STX exposure risks and health impacts to Arctic marine mammals as ocean warming and sea ice reduction continue.
Assuntos
Bivalves , Baleia Franca , Dinoflagellida , Animais , Cadeia Alimentar , Oceanos e Mares , Saxitoxina , Frutos do Mar , Morsas , ZooplânctonRESUMO
Domoic acid (DA) and saxitoxin (STX)-producing algae are present in Alaskan seas, presenting exposure risks to marine mammals that may be increasing due to climate change. To investigate potential increases in exposure risks to four pagophilic ice seal species (Erignathus barbatus, bearded seals; Pusa hispida, ringed seals; Phoca largha, spotted seals; and Histriophoca fasciata, ribbon seals), this study analyzed samples from 998 seals harvested for subsistence purposes in western and northern Alaska during 2005-2019 for DA and STX. Both toxins were detected in bearded, ringed, and spotted seals, though no clinical signs of acute neurotoxicity were reported in harvested seals. Bearded seals had the highest prevalence of each toxin, followed by ringed seals. Bearded seal stomach content samples from the Bering Sea showed a significant increase in DA prevalence with time (logistic regression, p = .004). These findings are consistent with predicted northward expansion of DA-producing algae. A comparison of paired samples taken from the stomachs and colons of 15 seals found that colon content consistently had higher concentrations of both toxins. Collectively, these results suggest that ice seals, particularly bearded seals (benthic foraging specialists), are suitable sentinels for monitoring HAB prevalence in the Pacific Arctic and subarctic.
RESUMO
Domoic acid (DA), the toxin causing amnesic shellfish poisoning (ASP), is produced globally by some diatoms in the genus Pseudo-nitzschia. DA has been detected in several marine mammal species in the Alaskan Arctic, raising health concerns for marine mammals and subsistence communities dependent upon them. Gastrointestinal matrices are routinely used to detect Harmful Algal Bloom (HAB) toxin presence in marine mammals, yet DA stability has only been studied extensively in shellfish-related matrices. To address this knowledge gap, we quantified DA in bowhead whale fecal samples at multiple time points for two groups: (1) 50% methanol extracts from feces, and (2) raw feces stored in several conditions. DA concentrations decreased to 70 ± 7.1% of time zero (T0) in the 50% methanol extracts after 2 weeks, but remained steady until the final time point at 5 weeks (66 ± 5.7% T0). In contrast, DA concentrations were stable or increased in raw fecal material after 8 weeks of freezer storage (-20 °C), at room temperature (RT) in the dark, or refrigerated at 1 °C. DA concentrations in raw feces stored in an incubator (37 °C) or at RT in the light decreased to 77 ± 2.8% and 90 ± 15.0% T0 at 8 weeks, respectively. Evaporation during storage of raw fecal material is a likely cause of the increased DA concentrations observed over time with the highest increase to 126 ± 7.6% T0 after 3.2 years of frozen storage. These results provide valuable information for developing appropriate sample storage procedures for marine mammal fecal samples.
Assuntos
Baleia Franca , Fezes/química , Ácido Caínico/análogos & derivados , Toxinas Marinhas/química , Animais , Ácido Caínico/químicaRESUMO
The expected reduction of ice algae with declining sea ice may prove to be detrimental to the Pacific Arctic ecosystem. Benthic organisms that rely on sea ice organic carbon (iPOC) sustain benthic predators such as the Pacific walrus (Odobenus rosmarus divergens). The ability to track the trophic transfer of iPOC is critical to understanding its value in the food web, but prior methods have lacked the required source specificity. We analyzed the H-Print index, based on biomarkers of ice algae versus phytoplankton contributions to organic carbon in marine predators, in Pacific walrus livers collected in 2012, 2014 and 2016 from the Northern Bering Sea (NBS) and Chukchi Sea. We paired these measurements with stable nitrogen isotopes (δ15N) to estimate trophic position. We observed differences in the contribution of iPOC in Pacific walrus diet between regions, sexes, and age classes. Specifically, the contribution of iPOC to the diet of Pacific walruses was higher in the Chukchi Sea (52%) compared to the NBS (30%). This regional difference is consistent with longer annual sea ice persistence in the Chukchi Sea. Within the NBS, the contribution of iPOC to walrus spring diet was higher in females (~45%) compared to males (~30%) for each year (p < 0.001), likely due to specific foraging behavior of females to support energetic demands associated with pregnancy and lactation. Within the Chukchi Sea, the iPOC contribution was similar between males and females, yet higher in juveniles than in adults. Despite differences in the origin of organic carbon fueling the system (sea ice versus pelagic derived carbon), the trophic position of adult female Pacific walruses was similar between the NBS and Chukchi Sea (3.2 and 3.5, respectively), supporting similar diets (i.e. clams). Given the higher quality of organic carbon from ice algae, the retreat of seasonal sea ice in recent decades may create an additional vulnerability for female and juvenile Pacific walruses and should be considered in management of the species.
Assuntos
Carbono , Dieta/métodos , Comportamento Alimentar/fisiologia , Cadeia Alimentar , Camada de Gelo/química , Fitoplâncton/química , Morsas/fisiologia , Animais , Regiões Árticas , Biomarcadores , Mudança Climática , Ecossistema , Feminino , Lactação , Masculino , Estado Nutricional , Oceanos e Mares , Gravidez , Estações do AnoRESUMO
We describe a case series of encapsulated fat necrosis with subcutaneous, abdominal, and thoracic locations in 7 subsistence-harvested bowhead whales Balaena mysticetus. Masses had a variably-dense fibrous capsule surrounding necrotic adipocytes and calcium salts (saponification). One animal also had prior concussive injury, pleural fibrosis, and hepatic lipoma; the other animals had no significant findings. The described condition is uncommon in bowhead whales, with 7/575 (1.2%) observed from 1996 to 2015. The exact mechanisms of development of encapsulated fat necrosis in bowhead whales remain to be determined. Encapsulated fat necrosis has been reported in other baleen whales, humans, and cows. It is usually an incidental finding during post-mortem examination that needs to be differentiated from neoplastic and inflammatory lesions, as the latter may have public health implications. Assessment of further cases in bowhead whales and other baleen whales is warranted to better understand their pathogenesis.
Assuntos
Baleia Franca , Doenças dos Bovinos , Necrose Gordurosa , Lipoma , Alaska , Animais , Bovinos , Cetáceos , Necrose Gordurosa/veterinária , Lipoma/veterináriaRESUMO
Adenoviruses are common pathogens infecting a wide range of vertebrates. Few cetacean adenoviruses have been described in the literature, and their pathogenicity is still unclear. Using PCR-based viral and bacterial pathogen surveillance in Bering-Chukchi-Beaufort seas bowhead whales (Balaena mysticetus) legally harvested 2012-15 during Alaskan aboriginal subsistence hunts, six of 59 bowhead whales (10%) tested positive for adenovirus DNA in the spleen. We found a high degree of sequence divergence from other mastadenoviruses, suggesting these may represent a novel species, tentatively named bowhead whale adenovirus. The sequences detected are distinct from adenoviruses previously identified in bottlenose dolphins (Tursiops truncatus) and harbor porpoises (Phocoena phocoena), forming two distinct clades in the cetacean hosts. The clinical impact is unclear, since no histopathologic evidence of adenovirus-associated disease was found. Furthermore, detection of adenovirus DNA in the spleen, contrary to other cetacean adenoviruses detected in the intestinal tract, may suggest a broader tissue tropism. Our study demonstrates adenovirus infection in bowhead whales and the usefulness of molecular diagnostics to discover and genetically characterize novel viruses in marine mammals.
Assuntos
Infecções por Adenoviridae , Baleia Franca , Adenoviridae/genética , Infecções por Adenoviridae/epidemiologia , Infecções por Adenoviridae/veterinária , Animais , Oceanos e Mares , FilogeniaRESUMO
The COVID-19 pandemic has re-focused attention on mechanisms that lead to zoonotic disease spillover and spread. Commercial wildlife trade, and associated markets, are recognized mechanisms for zoonotic disease emergence, resulting in a growing global conversation around reducing human disease risks from spillover associated with hunting, trade, and consumption of wild animals. These discussions are especially relevant to people who rely on harvesting wildlife to meet nutritional, and cultural needs, including those in Arctic and boreal regions. Global policies around wildlife use and trade can impact food sovereignty and security, especially of Indigenous Peoples. We reviewed known zoonotic pathogens and current risks of transmission from wildlife (including fish) to humans in North American Arctic and boreal biomes, and evaluated the epidemic and pandemic potential of these zoonoses. We discuss future concerns, and consider monitoring and mitigation measures in these changing socio-ecological systems. While multiple zoonotic pathogens circulate in these systems, risks to humans are mostly limited to individual illness or local community outbreaks. These regions are relatively remote, subject to very cold temperatures, have relatively low wildlife, domestic animal, and pathogen diversity, and in many cases low density, including of humans. Hence, favorable conditions for emergence of novel diseases or major amplification of a spillover event are currently not present. The greatest risk to northern communities from pathogens of pandemic potential is via introduction with humans visiting from other areas. However, Arctic and boreal ecosystems are undergoing rapid changes through climate warming, habitat encroachment, and development; all of which can change host and pathogen relationships, thereby affecting the probability of the emergence of new (and re-emergence of old) zoonoses. Indigenous leadership and engagement in disease monitoring, prevention and response, is vital from the outset, and would increase the success of such efforts, as well as ensure the protection of Indigenous rights as outlined in the United Nations Declaration on the Rights of Indigenous Peoples. Partnering with northern communities and including Indigenous Knowledge Systems would improve the timeliness, and likelihood, of detecting emerging zoonotic risks, and contextualize risk assessments to the unique human-wildlife relationships present in northern biomes.
Assuntos
Animais Selvagens , COVID-19 , Animais , Regiões Árticas , Ecossistema , Humanos , Pandemias/prevenção & controle , SARS-CoV-2 , Estados Unidos , Zoonoses/epidemiologiaRESUMO
Climate warming may affect the distribution of helminth parasites, allowing endemic species to increase in prevalence and new species to appear. We analyzed tissues from 141 ice-associated seals collected in the Alaskan (US) Bering and Chukchi seas during 2006-15 for internal helminth parasites and compared results with past studies. Specimens were collected from: ringed seals (Pusa hispida), bearded seals (Erignathus barbatus), spotted seals (Phoca largha), and ribbon seals (Histriophoca fasciata). Helminths were present in 94% (133/141) of the seals sampled. Nematodes were most prevalent in bearded (97%, 72/74) and spotted seals (93%, 13/14). Cestodes were most prevalent in bearded seals (82%, 61/74) and absent in ribbon seals, trematodes were only found in bearded (64%, 47/74) and ringed (5%, 2/44) seals, and acanthocephalans were mostly found in ringed (61%, 27/44) and spotted (64%, 9/14) seals. Although no helminths were new to the Bering-Chukchi Seas region, this study found a previously unreported host record for the lungworm Parafilaroides (Filaroides) gymnurus in a ribbon seal. We also found the lungworm Otostrongylus circumlitus in a ribbon seal and P. (F.) gymnurus in bearded seals, representing location records previously unreported from the Bering-Chukchi Seas region (although they have been reported from the Sea of Okhotsk). We found the cestode genus Pyramicocephalus in bearded seals (3%, 2/74) at a lower prevalence than was reported previously for Pyramicocephalus phocarum (44-100%) in the Bering-Chukchi Seas region. We found no species of the acanthocephalan genus Bolbosoma, although the genus was previously identified in ringed, spotted, and ribbon seals. This study yielded no new helminths and no increases in the prevalence of endemic parasites in these seal species.
Assuntos
Otárias/parasitologia , Helmintíase Animal/parasitologia , Alaska/epidemiologia , Animais , Helmintíase Animal/epidemiologiaRESUMO
Blubber and muscle were collected from male bowhead whales (n = 71) landed near Utqiagvik (Barrow), Alaska, between 2006 and 2015 and analyzed for lipid content and concentrations of persistent organic pollutants (POPs) in order to determine levels and trends over the collection period. Collection year was a significant predictor of blubber concentrations for most classes of POPs, while for a few classes, animal length (proxy for age) was also a significant predictor. This is the first report on levels of PBDEs in bowhead whales; concentrations of these compounds are low (≤55 ng/g wet weight). Blubber concentrations were lower than those reported in samples collected between 1992 and 2000, and many POP classes in blubber declined significantly between 2006 and 2015. Concentrations of POPs in bowhead whale tissues, which are subsistence foods for Native Alaskan communities, appear to be declining at rates comparable with previously reported temporal trends in Arctic biota.
Assuntos
Tecido Adiposo/metabolismo , Baleia Franca/metabolismo , Poluentes Químicos da Água/metabolismo , Alaska , Animais , Regiões Árticas , Monitoramento Ambiental , MasculinoRESUMO
The external acoustic meatus (EAM) of most baleen whales accumulates cellular debris annually in the lumen as whales age, forming a lamellated ear plug. The bowhead whale ear plug is formed from annually molting lining of the EAM as the entire epithelium releases at the level of the stratum basale during the spring migration. Epithelial regeneration is mostly completed by the fall migration, remaining intact for 6-7 months before being torn off the following spring. Desmosomes are integral to cell-cell adhesion with connecting desmosomal cadherins desmoglein (dsg) and desmocollin (dsc). Paraffin sections of the oral cavity and EAM lining of spring and fall adult bowhead whales, as well as the EAM of spring-caught juvenile, were immunohistochemically examined for the presence of these cadherins. In all fall specimens, both cadherins occurred in all layers except the superficial keratinous layer of the oral cavity. In spring, three different conditions existed: (a) oral cavity of spring-caught adults had reduced cadherins, with superficial fissuring in its keratinized layer and vacuolation in the upper stratum spinosum; (b) EAM of juvenile spring-caught whales displayed fissuring with accompanying reduction of both cadherins in its superficial lining; and (c) EAM lining of spring-caught adults displayed deep fissures, reduced cadherins, and absence of dsc1 in the fissuring zone. These results suggest that shedding of skin layers in mammals, whether normal molting, pathological, or the result of injury and wound repair all revolve around desmosome function. The specific role, structure, and location of these two cadherins need to be further addressed.
Assuntos
Baleia Franca/metabolismo , Adesão Celular/fisiologia , Desmossomos/metabolismo , Pele/metabolismo , Animais , Caderinas/metabolismo , Meato Acústico Externo , Queratinas/metabolismoRESUMO
This case study describes a persistent MüÌllerian duct syndrome (PMDS), a rare form of XY disorder of sex development (DSD), in a mature (>15 yr) beluga whale Delphinapterus leucas. The phenotypically and genetically male beluga whale had both MüÌllerian (paramesonephric) and Wolffian (mesonephric) duct derivatives. A mild hydrometra was present. Gross and histological analyses indicated the testes were atrophied. Histopathologic findings in the testes also included fibrosis in addition to ductus deferens ductular dilation, epididymal ductular dilation, lymphoplasmacytic balanitis, uterine glandular atrophy, and endometrial fibrosis. DSDs are rarely reported in cetaceans, and PMDS has never been described in a cetacean.