RESUMO
Within a practical course of cytotaxonomy organized in Pisa (Italy) on February 2024 by the Group for Floristics, Systematics and Evolution of the Italian Botanical Society, we tested whether using image analysis softwares possible biases are still introduced by different observers. We conclude that observer bias selectively applies in possibly overestimating the length of short arms in a karyotype. As a consequence, the parameters most sensitive to these possible errors are CVCI and CVCL, and to a less degree MCA and THL. To achieve more stable results among observers, a still lacking standardized measurement protocol could be helpful.
RESUMO
Despite the wide amount of scientific contributions published on alien plant species, their diffusion dynamics, and their interactions with native taxa, it is increasingly difficult to slow down their spreading and their negative impact on habitats. Last recent years, in fact, a sharp rise in the number of new alien plant taxa introduced in Italy and Europe has been recorded. The aim of this work is to investigate most of the Italian territory in order to verify whether this alarming trend is still underway. Specimen collections and/or observations of alien plants have been performed in as many as 12 Italian regions. All the collected specimens are stored in public or private herbaria. Taxa have been identified according to the literature from the countries of origin of the investigated taxa, while the nomenclature followed the current international references. Updates on 106 taxa are reported. In particular, among 117 new records, 89 are first records, 27 are changes to status and there is 1 extinction. Seven new taxa for Italian alien flora are reported, two of which are new to Europe. The administrative regions with the highest number of records are Calabria (48), Sardegna (17) and Sicilia (15). Five of the surveyed taxa, for the first time, have been considered invasive aliens to Italian territory. The unfrequent amount of original results provided by this work, over the simple importance of data itself, proves how floristic investigation, still today, represents one of the most effective tools in broadening the current knowledge about alien taxa and their dynamics.
RESUMO
Lavandula austroapennina N.G. Passal., Tundis and Upon has recently been described as a new species endemic to the southern Apennines (Italy). Locally, this species has a long ethnobotanical tradition of use for curative and decoration purposes and has been the protagonist of a flourishing essential oil production chain. Currently, while this tradition has long since ended, attention to the species is necessary, with a view to enhancing marginal and rural areas, as a recovery of a precious resource to (i) get insights into its (poly)phenolic fraction and (ii) address new and innovative uses of all its organs in various application fields (e.g., cosmeceutical sector). Therefore, after field sampling and dissection of its organs (i.e., corolla, calyx, leaf, stem and root), the latter, previously deterpenated and defatted, were subjected to accelerated ultrasound extraction and the related alcoholic extracts were obtained. Chemical composition, explored by UHPLC-QqTOF-MS/MS, and the following multivariate data analysis showed that the hydroxycinnamoyl derivatives are abundant in the leaf, stem and root, while flavonoids are more present in corolla and calyx. In particular, coumaroyl flavonoids with glyconic portion containing also hexuronyl moieties differentiated corolla organ, while yunnaneic acid D isomers and esculin distinguished root. When antiradical and reducing properties were evaluated (by means of ABTS, DPPH and PFRAP tests), a similar clustering of organs was achieved and the marked antioxidant efficacy of leaf, stem and root extracts was found. Thus, following cytotoxicity screening by MTT test on HaCaT keratinocytes, the protective effects of the organ extracts were assessed by wound closure observed after the scratch test. In addition, the extracts from corolla, leaf and stem were particularly active at low doses inducing rapid wound closure on HaCaT cells at a concentration of 1 µg/mL. The diversity in (poly)phenols of each organ and the promising bioactivity preliminarily assessed suggest further investigation to be carried out to fully recover and valorize this precious endemic vascular plant.
Assuntos
Lamiaceae , Lavandula , Polifenóis , Lavandula/química , Espectrometria de Massas em Tandem , Extratos Vegetais/química , Flavonoides/farmacologia , Flavonoides/análise , Antioxidantes/químicaRESUMO
Invasive alien species are among the main global drivers of biodiversity loss posing major challenges to nature conservation and to managers of protected areas. The present study applied a methodological framework that combined invasive Species Distribution Models, based on propagule pressure, abiotic and biotic factors for 14 invasive alien plants of Union concern in Italy, with the local interpretable model-agnostic explanation analysis aiming to map, evaluate and analyse the risk of plant invasions across the country, inside and outside the network of protected areas. Using a hierarchical invasive Species Distribution Model, we explored the combined effect of propagule pressure, abiotic and biotic factors on shaping invasive alien plant occurrence across three biogeographic regions (Alpine, Continental, and Mediterranean) and realms (terrestrial and aquatic) in Italy. We disentangled the role of propagule pressure, abiotic and biotic factors on invasive alien plant distribution and projected invasion risk maps. We compared the risk posed by invasive alien plants inside and outside protected areas. Invasive alien plant distribution varied across biogeographic regions and realms and unevenly threatens protected areas. As an alien's occurrence and risk on a national scale are linked with abiotic factors followed by propagule pressure, their local distribution in protected areas is shaped by propagule pressure and biotic filters. The proposed modelling framework for the assessment of the risk posed by invasive alien plants across spatial scales and under different protection regimes represents an attempt to fill the gap between theory and practice in conservation planning helping to identify scale, site, and species-specific priorities of management, monitoring and control actions. Based on solid theory and on free geographic information, it has great potential for application to wider networks of protected areas in the world and to any invasive alien plant, aiding improved management strategies claimed by the environmental legislation and national and global strategies.
Assuntos
Biodiversidade , Ecossistema , Plantas , Espécies Introduzidas , Especificidade da EspécieRESUMO
As part of a project aimed at promoting the use of Calendula arvensis (Vaill.) L. (field marigold, Asteraceae) phytocomplexes in cosmeceutical formulations, the chemical composition in apolar specialized metabolites is herein elucidated. Furthermore, the screening of the cytotoxicity of the apolar extracts was evaluated in order to underline their safety as functional ingredients for cosmetics. After dissection of Calendula organs (florets, fruits, leaves, bracts, stems, and roots), ultrasound-assisted maceration in n-hexane as an extracting solvent allowed us to obtain oil-like mixtures, whose chemical composition has been highlighted through a UHPLC-ESI-QqTOF-MS/MS approach. Twenty-nine metabolites were tentatively identified; different compounds, among which the well-known poly-unsaturated fatty acids, and oxylipins and phosphatides were detected for the first time in Calendula genus. The screening of the dose-response cytotoxicity of the apolar extracts of C. arvensis highlighted the concentration of 10 µg/mL as the most suitable for the formulation of cosmeceutical preparations. Sera enriched with leaf and fruit apolar extracts turned out to have the best activity, suggesting it can be used as a new source in skin care thanks to their higher content in fatty acids.
Assuntos
Calendula , Cosmecêuticos , Cosmecêuticos/farmacologia , Cosmecêuticos/análise , Calendula/química , Espectrometria de Massas em Tandem , Folhas de Planta/química , Extratos Vegetais/químicaRESUMO
Calendula arvensis (Vaill.) L. (field marigold, Asteraceae) is an alimurgic plant, whose flowers and leaves are a common part of local food dishes. The diversity in polar specialized metabolites is herein unraveled, with the aim to further promote and valorize the food use of the plant. To this purpose, following the plant dissection of its organs (florets, fruits, leaves, bracts, stems, and roots), ultrasound assisted maceration has been employed in order to recover phenols and polyphenols. Through an untargeted UHPLC-HR MS (Ultra-High-Performance Liquid Chromatography-High-Resolution Mass Spectrometry) approach, and deeper investigation of the fragmentation patterns of each compound by tandem mass spectrometry, the florets' constitution in triterpene saponins and flavonol glycosides has been highlighted, whereas hydroxycinnamoyl compounds are mainly in bracts and fruits. The antiradical and reducing capabilities of the organs' extracts have been assessed, and data acquired have been analyzed by cluster analysis, which allowed bracts and fruits to be observed, despite their negligible food use, as the most active extracts. Chemical and antioxidant data on the diverse organs of field marigold suggest new investigative food and nutraceutical scenarios of this plant, also revalorizing and preserving its traditional uses.
RESUMO
Wild edible plants, once consumed in times of famine or for health purposes, today represent an interesting dietary supplement, aimed at enriching local dishes and/or formulating healthy nutraceutical products. In fact, the broad content of different, and diversely bioactive, specialized metabolites therein suggests new scenarios of use which, in order to be as functional as possible, must maximize the bioactivity of these compounds while preserving their chemistry. In this context, based on a recent investigation on the metabolic profile of the organs of Calendula arvensis that highlighted that florets are abundant in flavonol glycosides and triterpene saponins, the freeze-drying encapsulation of their alcoholic extract (FE) into maltodextrin (MD) was investigated. FE-MD chemical composition was evaluated using Fourier Transform InfraRed spectroscopy (FTIR), while ultra-high performance liquid chromatography coupled with high-resolution tandem mass spectrometry (UHPLC-HRMS/MS) techniques were employed to unravel FE compound preservation also during in vitro simulated digestion. The establishment of H-bonds between FE compounds and MD hydroxyl groups was in line with FE-MD biocompatibility in Caco-2 cells, while in vitro digestion mostly affected structural integrity and/or diversity. Flavonol compounds underwent deglycosylation and demethylation, while deacylation, beyond oxidation, involved triterpene saponins, which massively preserve their aglycone core.
Assuntos
Calendula , Saponinas , Triterpenos , Humanos , Cromatografia Líquida de Alta Pressão/métodos , Calendula/metabolismo , Células CACO-2 , Saponinas/análise , Triterpenos/químicaRESUMO
An integrative study on some species of Asphondylia was carried out. Two species of gall midges from Italy, Asphondylia rivelloi sp. nov. and Asphondylia micromeriae sp. nov. (Diptera: Cecidomyiidae), causing flower galls respectively on Clinopodium vulgare and Micromeria graeca (Lamiaceae), are described and illustrated. The characteristics of each developmental stage and induced galls are described, which allowed the discrimination of these new species in the complex of Asphondylia developing on Lamiaceae plants. Molecular data based on sequencing both nuclear (ITS2 and 28S-D2) and mitochondrial (COI) genes are also provided in support of this discrimination. Phylogeny based on nuclear markers is consistent with the new species, whereas COI phylogeny suggests introgression occurring between the two species. However, these species can also be easily identified using a morphological approach. Phenology of host plants and gall midges are described, and some peculiar characteristics allow the complete and confident discrimination and revision of the treated species. Gall-associated fungi were identified as Botryosphaeria dothidea,Alternaria spp., and Cladosporium spp.
RESUMO
Invasive alien plants are a major threat to biodiversity and they contribute to the unfavourable conservation status of habitats of interest to the European Community. In order to favour implementation of European Union Regulation no. 1143/2014 on invasive alien species, the Italian Society of Vegetation Science carried out a large survey led by a task force of 49 contributors with expertise in vegetation across all the Italian administrative regions. The survey summed up the knowledge on impact mechanisms of invasive alien plants in Italy and their outcomes on plant communities and the EU habitats of Community Interest, in accordance with Directive no. 92/43/EEC. The survey covered 241 alien plant species reported as having deleterious ecological impacts. The data collected illustrate the current state of the art, highlight the main gaps in knowledge, and suggest topics to be further investigated. In particular, the survey underlined competition as being the main mechanism of ecological impact on plant communities and Natura 2000 habitats. Of the 241 species, only Ailanthus altissima was found to exert an ecological impact on plant communities and Natura 2000 habitats in all Italian regions; while a further 20 species impact up to ten out of the 20 Italian administrative regions. Our data indicate that 84 out of 132 Natura 2000 Habitats (64%) are subjected to some degree of impact by invasive alien plants. Freshwater habitats and natural and semi-natural grassland formations were impacted by the highest number of alien species, followed by coastal sand dunes and inland dunes, and forests. Although not exhaustive, this research is the first example of nationwide evaluation of the ecological impacts of invasive alien plants on plant communities and Natura 2000 Habitats.
Assuntos
Ecossistema , Espécies Introduzidas , Biodiversidade , Itália , PlantasRESUMO
Invasive alien species are currently considered one of the main threats to global biodiversity. One of the most rapidly expanding invasive plants in recent times is Kalanchoe × houghtonii (Crassulaceae), an artificial hybrid created in the 1930s in the United States by experimental crossings between K. daigremontiana and K. tubiflora, two species endemic to Madagascar. Thanks to its large colonizing capacity (mainly derived from the production of asexual plantlets), K. × houghtonii soon escaped from cultivation and quickly spread in many parts of the world. However, its actual range is not well known due to the lack of a formal description until recent times (2006) and its strong morphological resemblance with one of its parentals (K. daigremontiana). The present study was aimed, in the first instance, to delimit the present distribution area of K. × houghtonii at the global scale by gathering and validating all its occurrences and to track its colonization history. Currently, K. × houghtonii can be found on all continents except Antarctica, although it did not reach a global distribution until the 2000s. Its potential distribution, estimated with MaxEnt modelling software, is mainly centered in subtropical regions, from 20° to 40° of both northern and southern latitudes, mostly in areas with a high anthropogenic activity. Unexpectedly, concomitant to a poleward migration, future niche models suggest a considerable reduction of its range by up to one-third compared to the present, which might be related with the Crassulaceaean Acid Metabolism (CAM) of K. × houghtonii. Further research may shed light as to whether a decrease in potential habitats constitutes a general pattern for Crassulaceae and CAM plants.
Assuntos
Ecossistema , Espécies Introduzidas , Kalanchoe/genética , Kalanchoe/fisiologia , Biodiversidade , Clima , Mudança Climática , Ecologia , Geografia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , SoftwareRESUMO
The risks for human health and the ecosystem due to potentially toxic elements (PTEs) were investigated in a farmland classified as potentially contaminated by Cr and Zn by analysing native vegetation and relative rhizo-soils. Rhizo-soils of different plant species were found to be enriched by Cr and Zn as well as by elements omitted from official environmental characterization, namely Cd, As and Pb. The ecological risk index (ERI) had a mean value of 510, indicating high to "very high" risk in different habitats. ERI above the very high risk threshold characterized the rhizo-soils of Lolium perenne, Erigeron sumatrensis, Oloptum thomasii and Amaranthus retroflexus. Two of these plant species (E. sumatrensis and A. retroflexus) are exotic in Italy and accumulated Cd in the shoots above the EU threshold for forage, suggesting a potential risk of Cd transfer to the food chain. Hence, this element was found to contribute most to the ERI. Cynodon dactylon was recognized as the most suitable plant species for the phytostabilization of the contaminated site, as it showed the highest bioavailable Cd accumulation in roots coupled with the highest frequency and soil-cover capacity during spring-summer, when the risk of soil resuspension is generally more intense.
Assuntos
Monitoramento Ambiental/métodos , Resíduos Industriais/análise , Metais Pesados/análise , Poaceae/crescimento & desenvolvimento , Poluentes do Solo/análise , Curtume , Ecossistema , Fazendas , Humanos , Itália , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Poaceae/química , Solo/químicaRESUMO
Ecosystem invasion by non-native, nitrogen-fixing species is a global phenomenon with serious ecological consequences. However, in the Mediterranean basin few studies addressed the impact of invasion by nitrogen-fixing shrubs on soil quality and hydrological properties at local scale, and the possible effects on succession dynamics and ecosystem invasibility by further species. In this multidisciplinary study we investigated the impact of Genista aetnensis (Biv.) DC., an exotic nitrogen-fixing shrub, on the Vesuvius Grand Cone (Southern Italy). Specifically, we tested the hypotheses that the invasion of G. aetnensis has a significant impact on soil quality, soil hydrological regime, local microclimate and plant community structure, and that its impact increases during the plant ontogenetic cycle. We showed that G. aetnensis, in a relatively short time-span (i.e. ~ 40 years), has been able to build-up an island of fertility under its canopy, by accumulating considerable stocks of C, N, and P in the soil, and by also improving the soil hydrological properties. Moreover, G. aetnensis mitigates the daily range of soil temperature, reducing the exposure of coexisting plants to extremely high temperatures and water loss by soil evaporation, particularly during the growing season. Such amelioration of soil quality, coupled with the mitigation of below-canopy microclimatic conditions, has enhanced plant colonization of the barren Grand Cone slopes, by both herbaceous and woody species. These results suggest that the invasion of G. aetnensis could eventually drive to the spread of other, more resource-demanding exotic species, promoting alternative successional trajectories that may dramatically affect the local landscape. Our study is the first record of the invasion of G. aetnensis, an additional example of the regime shifts driven by N-fixing shrubs in Mediterranean region. Further studies are needed to identity specific management practices that can limit the spread and impacts of this species.