Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Am J Dent ; 33(5): 273-276, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33017531

RESUMO

PURPOSE: To evaluate the effect of glass-ionomer cement (GIC) on gene expression (gtfC, gtfD, covR, and vicR) of Streptococcus mutans (S. mutans) biofilms at 2, 4 and 24 hours. METHODS: Six groups were tested according to the materials and time observation, as follows: ceramic (IPS Empress Esthetic), as the control group, and GIC (Ketac Molar Easymix); and time points of S. mutans biofilm formation (2, 4, and 24 hours). Round-shaped samples (10 x 2 mm) of each material were prepared according to the manufacturers' specifications. GIC discs were handled in a laminar flow hood under aseptic conditions and stored at 100% relative humidity at 37°C for 24 hours to complete setting reaction. The samples were placed in a 24-well plate and immersed in 1.5 ml BHI + 1% sucrose with an inoculum of S. mutans UA159 to allow biofilm growth during 2, 4, and 24 hours. Next, the samples were removed, vortexed and centrifuged to collect cell pellets (n=5) for each material and time point. Pellets were stored at -80°C. Then, RNA was purified using the RNeasy Mini Kit protocol. The RNA was converted in cDNA using iScript cDNA Synthesis according to the manufacturer's recommendations. Analysis of gtfC, gtfD, vicR, and covR expressions was performed using Step One Real-Time qPCR device with specific primers for each gene and the analysis normalized by 16S reference gene expression. Data from gtfC, gtfD, and vicR were analyzed by t-test to compare between groups while Mann-Whitney was used to analyze covR expression (α= 0.05). RESULTS: No significant differences at 2 and 4 hours between materials for all analyzed genes were noted. However, in the 24-hour period, a significant decrease in gtfC and vicR expressions were observed, while covR expression increased when GIC was compared to ceramic. CLINICAL SIGNIFICANCE: The use of glass-ionomer cement decreased the virulence of S. mutans biofilms, which may imply a reduced bacterial cariogenic potential.


Assuntos
Cimentos de Ionômeros de Vidro/farmacologia , Streptococcus mutans/genética , Biofilmes , Sacarose , Virulência
2.
J Med Microbiol ; 68(4): 600-608, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30843785

RESUMO

PURPOSE: Mechanisms underlying systemic infections by oral species of Mitis (Streptococcus mitis, Streptococcus oralis) and Sanguinis (Streptococcus gordonii, Streptococcus sanguinis) commensal streptococci are poorly understood. This study investigates profiles of susceptibility to complement-mediated host immunity in representative strains of these four species, which were isolated from oral sites or from the bloodstream. METHODOLOGY: Deposition of complement opsonins (C3b/iC3b), and surface binding to C-reactive protein (CRP) and to IgG antibodies were quantified by flow cytometry in 34 strains treated with human serum (HS), and compared to rates of opsonophagocytosis by human PMN mediated by complement (CR1/3) and/or IgG Fc (FcγRII/III) receptors. RESULTS: S. sanguinis strains showed reduced susceptibility to complement opsonization and low binding to CRP and to IgG compared to other species. Surface levels of C3b/iC3b in S. sanguinis strains were 4.5- and 7.8-fold lower than that observed in S. gordonii and Mitis strains, respectively. Diversity in C3b/iC3b deposition was evident among Mitis species, in which C3b/iC3b deposition was significantly associated with CR/FcγR-dependent opsonophagocytosis by PMN (P<0.05). Importantly, S. gordonii and Mitis group strains isolated from systemic infections showed resistance to complement opsonization when compared to oral isolates of the respective species (P<0.05). CONCLUSIONS: This study establishes species-specific profiles of susceptibility to complement immunity in Mitis and Sanguinis streptococci, and indicates that strains associated with systemic infections have increased capacity to evade complement immunity. These findings highlight the need for studies identifying molecular functions involved in complement evasion in oral streptococci.


Assuntos
Complemento C3b/imunologia , Variação Genética , Boca/microbiologia , Estreptococos Viridans/genética , Estreptococos Viridans/imunologia , Aderência Bacteriana , Biofilmes , Proteína C-Reativa/metabolismo , Humanos , Evasão da Resposta Imune , Imunoglobulina G/imunologia , Neutrófilos/imunologia , Neutrófilos/microbiologia , Fagocitose , Infecções Estreptocócicas/sangue , Infecções Estreptocócicas/imunologia , Streptococcus gordonii/genética , Streptococcus gordonii/imunologia , Streptococcus mitis/genética , Streptococcus mitis/imunologia , Streptococcus sanguis/genética , Streptococcus sanguis/imunologia
3.
Infect Immun ; 86(4)2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29339459

RESUMO

Streptococcus sanguinis is a pioneer species of teeth and a common opportunistic pathogen of infective endocarditis. In this study, we identified a two-component system, S. sanguinis SptRS (SptRS Ss ), affecting S. sanguinis survival in saliva and biofilm formation. Isogenic mutants of sptRSs (SKsptR) and sptSSs (SKsptS) showed reduced cell counts in ex vivo assays of viability in saliva compared to those of parent strain SK36 and complemented mutants. Reduced counts of the mutants in saliva were associated with reduced growth rates in nutrient-poor medium (RPMI) and increased susceptibility to the deposition of C3b and the membrane attach complex (MAC) of the complement system, a defense component of saliva and serum. Conversely, sptRSs and sptSSs mutants showed increased biofilm formation associated with higher levels of production of H2O2 and extracellular DNA. Reverse transcription-quantitative PCR (RT-qPCR) comparisons of strains indicated a global role of SptRS Ss in repressing genes for H2O2 production (2.5- to 15-fold upregulation of spxB, spxR, vicR, tpk, and ackA in sptRSs and sptSSs mutants), biofilm formation, and/or evasion of host immunity (2.1- to 11.4-fold upregulation of srtA, pcsB, cwdP, iga, and nt5e). Compatible with the homology of SptR Ss with AraC-type regulators, duplicate to multiple conserved repeats were identified in 1,000-bp regulatory regions of downstream genes, suggesting that SptR Ss regulates transcription by DNA looping. Significant transcriptional changes in the regulatory genes vicR, spxR, comE, comX, and mecA in the sptRSs and sptSSs mutants further indicated that SptRS Ss is part of a regulatory network that coordinates cell wall homeostasis, H2O2 production, and competence. This study reveals that SptRS Ss is involved in the regulation of crucial functions for S. sanguinis persistence in the oral cavity.


Assuntos
Biofilmes , Saliva/microbiologia , Infecções Estreptocócicas/microbiologia , Streptococcus sanguis/fisiologia , Proteínas de Bactérias/genética , Proteínas do Sistema Complemento/imunologia , Regulação Bacteriana da Expressão Gênica , Loci Gênicos , Genoma Bacteriano , Genômica/métodos , Interações Hospedeiro-Patógeno/imunologia , Peróxido de Hidrogênio/metabolismo , Viabilidade Microbiana/genética , Estresse Oxidativo , Deleção de Sequência , Infecções Estreptocócicas/imunologia , Infecções Estreptocócicas/metabolismo
4.
Mol Oral Microbiol ; 32(5): 419-431, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28382721

RESUMO

Streptococcus mutans, a dental caries pathogen, can promote systemic infections upon reaching the bloodstream. The two-component system (TCS) VicRKSm of S. mutans regulates the synthesis of and interaction with sucrose-derived exopolysaccharides (EPS), processes associated with oral and systemic virulence. In this study, we investigated the mechanisms by which VicRKSm affects S. mutans susceptibility to blood-mediated immunity. Compared with parent strain UA159, the vicKSm isogenic mutant (UAvic) showed reduced susceptibility to deposition of C3b of complement, low binding to serum immunoglobulin G (IgG), and low frequency of C3b/IgG-mediated opsonophagocytosis by polymorphonuclear cells in a sucrose-independent way (P<.05). Reverse transcriptase quantitative polymerase chain reaction analysis comparing gene expression in UA159 and UAvic revealed that genes encoding putative peptidases of the complement (pepO and smu.399) were upregulated in UAvic in the presence of serum, although genes encoding murein hydrolases (SmaA and Smu.2146c) or metabolic/surface proteins involved in bacterial interactions with host components (enolase, GAPDH) were mostly affected in a serum-independent way. Among vicKSm -downstream genes (smaA, smu.2146c, lysM, atlA, pepO, smu.399), only pepO and smu.399 were associated with UAvic phenotypes; deletion of both genes in UA159 significantly enhanced levels of C3b deposition and opsonophagocytosis (P<.05). Moreover, consistent with the fibronectin-binding function of PepO orthologues, UAvic showed increased binding to fibronectin. Reduced susceptibility to opsonophagocytosis was insufficient to enhance ex vivo persistence of UAvic in blood, which was associated with growth defects of this mutant under limited nutrient conditions. Our findings revealed that S. mutans employs mechanisms of complement evasion through peptidases, which are controlled by VicRKSm.


Assuntos
Proteínas de Bactérias/metabolismo , Complemento C3b/imunologia , Regulação Bacteriana da Expressão Gênica , Evasão da Resposta Imune , Streptococcus mutans/imunologia , Streptococcus mutans/fisiologia , Bacteriemia , Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Cárie Dentária/microbiologia , Expressão Gênica , Humanos , Imunoglobulina G/imunologia , Proteínas de Membrana/genética , Mutação , Ligação Proteica , Streptococcus mutans/genética , Sacarose/metabolismo , Virulência
5.
J Med Microbiol ; 65(12): 1456-1464, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27902365

RESUMO

Emerging antibiotic resistance in the oropharyngeal microbiota, of which Streptococcus salivarius is a prominent species, represents a challenge for treating paediatric populations. In this study, we investigated the role of Streptococcussalivarius as a reservoir for antibiotic resistance genes (ARG) in the oral microbiota by analysing 95 Streptococcussalivarius isolates from 22 healthy infants (2-16 months of age). MICs of penicillin G, amoxicillin, erythromycin, tetracycline, doxycycline and streptomycin were determined. ARG profiles were assessed in a subset of 21 strains by next-generation sequencing of genomes, followed by searches of assembled reads against the Comprehensive Antibiotic Resistance Database. Strains resistant to erythromycin, penicillins and tetracyclines were isolated from 83.3, 33.3 and 16.6 %, respectively, of infants aged 2 to 8 months with no prior antibiotic treatment. These percentages were100.0, 66.6 and 50.0 %, by 13 to 16 months of age. ARG or polymorphisms associated with antibiotic resistance were the most prevalent and involved genes for macrolide efflux (mel, mefA/E and macB), ribosomal protection [erm(B), tet(M) and tet(O)] and ß-lactamase-like proteins. Phylogenetically related strains showing multidrug-resistant phenotypes harboured multidrug efflux ARG. Polymorphic genes associated with antibiotic resistance to drugs affecting DNA replication, folate synthesis, RNA/protein synthesis and regulators of antibiotic stress responses were detected. These data imply that Streptococcussalivarius strains established during maturation of the oral microbiota harbour a diverse array of functional ARG, even in the absence of antibiotic selective pressures, highlighting a potential role for this species in shaping antibiotic susceptibility profiles of oropharyngeal communities.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla , Boca/microbiologia , Streptococcus salivarius/efeitos dos fármacos , Streptococcus salivarius/genética , Antibacterianos/classificação , Proteínas de Bactérias/genética , Proteínas de Transporte/genética , Farmacorresistência Bacteriana Múltipla/genética , Feminino , Genes Bacterianos , Genes MDR , Genoma Bacteriano , Genótipo , Voluntários Saudáveis , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Testes de Sensibilidade Microbiana , Fenótipo , Análise de Sequência de DNA , Streptococcus salivarius/classificação , Streptococcus salivarius/fisiologia
6.
Infect Immun ; 84(11): 3206-3219, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27572331

RESUMO

Streptococcus mutans, a major pathogen of dental caries, may promote systemic infections after accessing the bloodstream from oral niches. In this study, we investigate pathways of complement immunity against S. mutans and show that the orphan regulator CovR (CovRSm) modulates susceptibility to complement opsonization and survival in blood. S. mutans blood isolates showed reduced susceptibility to C3b deposition compared to oral isolates. Reduced expression of covRSm in blood strains was associated with increased transcription of CovRSm-repressed genes required for S. mutans interactions with glucans (gbpC, gbpB, and epsC), sucrose-derived exopolysaccharides (EPS). Consistently, blood strains showed an increased capacity to bind glucan in vitro Deletion of covRSm in strain UA159 (UAcov) impaired C3b deposition and binding to serum IgG and C-reactive protein (CRP) as well as phagocytosis through C3b/iC3b receptors and killing by neutrophils. Opposite effects were observed in mutants of gbpC, epsC, or gtfBCD (required for glucan synthesis). C3b deposition on UA159 was abolished in C1q-depleted serum, implying that the classical pathway is essential for complement activation on S. mutans Growth in sucrose-containing medium impaired the binding of C3b and IgG to UA159, UAcov, and blood isolates but had absent or reduced effects on C3b deposition in gtfBCD, gbpC, and epsC mutants. UAcov further showed increased ex vivo survival in human blood in an EPS-dependent way. Consistently, reduced survival was observed for the gbpC and epsC mutants. Finally, UAcov showed an increased ability to cause bacteremia in a rat model. These results reveal that CovRSm modulates systemic virulence by regulating functions affecting S. mutans susceptibility to complement opsonization.


Assuntos
Proteínas de Bactérias/fisiologia , Proteínas do Sistema Complemento/imunologia , Streptococcus mutans/fisiologia , Animais , Sangue/microbiologia , Complemento C3b/metabolismo , Proteínas do Sistema Complemento/genética , Proteínas do Sistema Complemento/metabolismo , Modelos Animais de Doenças , Glucanos/metabolismo , Humanos , Polissacarídeos Bacterianos/metabolismo , Ratos , Ratos Sprague-Dawley , Streptococcus mutans/patogenicidade , Transcrição Gênica , Virulência/fisiologia
7.
Caries Res ; 50(3): 279-87, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27160402

RESUMO

Streptococcus mutans is an oral bacterium considered to play a major role in the development of dental caries. This study aimed to investigate the prevalence of S. mutans in active and arrested dentine carious lesions of children with early childhood caries and to examine the expression profile of selected S. mutans genes associated with survival and virulence, within the same carious lesions. Dentine samples were collected from 29 active and 16 arrested carious lesions that were diagnosed in preschool children aged 2-5 years. Total RNA was extracted from the dentine samples, and reverse transcription quantitative real-time PCR analyses were performed for the quantification of S. mutans and for analyses of the expression of S. mutans genes associated with bacterial survival (atpD, nox, pdhA) and virulence (fabM and aguD). There was no statistically significant difference in the prevalence of S. mutans between active and arrested carious lesions. Expression of the tested genes was detected in both types of carious dentine. The pdhA (p = 0.04) and aguD (p = 0.05) genes were expressed at higher levels in arrested as compared to active lesions. Our findings revealed that S. mutans is part of the viable microbial community in active and arrested dentine carious lesions. The increase in expression of the pdhA and aguD genes in arrested lesions is likely due to the unfavourable environmental conditions for microbial growth, inherent to this type of lesions.


Assuntos
Cárie Dentária/microbiologia , Dentina/microbiologia , Streptococcus mutans/patogenicidade , Criança , Pré-Escolar , Cárie Dentária/classificação , Cárie Dentária/diagnóstico por imagem , Dentina/patologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Microbiota , RNA Bacteriano/isolamento & purificação , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estatísticas não Paramétricas , Streptococcus mutans/genética , Virulência
8.
Infect Immun ; 82(12): 4941-51, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25183732

RESUMO

Streptococcus sanguinis is a commensal pioneer colonizer of teeth and an opportunistic pathogen of infectious endocarditis. The establishment of S. sanguinis in host sites likely requires dynamic fitting of the cell wall in response to local stimuli. In this study, we investigated the two-component system (TCS) VicRK in S. sanguinis (VicRKSs), which regulates genes of cell wall biogenesis, biofilm formation, and virulence in opportunistic pathogens. A vicK knockout mutant obtained from strain SK36 (SKvic) showed slight reductions in aerobic growth and resistance to oxidative stress but an impaired ability to form biofilms, a phenotype restored in the complemented mutant. The biofilm-defective phenotype was associated with reduced amounts of extracellular DNA during aerobic growth, with reduced production of H2O2, a metabolic product associated with DNA release, and with inhibitory capacity of S. sanguinis competitor species. No changes in autolysis or cell surface hydrophobicity were detected in SKvic. Reverse transcription-quantitative PCR (RT-qPCR), electrophoretic mobility shift assays (EMSA), and promoter sequence analyses revealed that VicR directly regulates genes encoding murein hydrolases (SSA_0094, cwdP, and gbpB) and spxB, which encodes pyruvate oxidase for H2O2 production. Genes previously associated with spxB expression (spxR, ccpA, ackA, and tpK) were not transcriptionally affected in SKvic. RT-qPCR analyses of S. sanguinis biofilm cells further showed upregulation of VicRK targets (spxB, gbpB, and SSA_0094) and other genes for biofilm formation (gtfP and comE) compared to expression in planktonic cells. This study provides evidence that VicRKSs regulates functions crucial for S. sanguinis establishment in biofilms and identifies novel VicRK targets potentially involved in hydrolytic activities of the cell wall required for these functions.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Streptococcus sanguis/fisiologia , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Teste de Complementação Genética , Reação em Cadeia da Polimerase em Tempo Real , Streptococcus sanguis/genética , Streptococcus sanguis/metabolismo
9.
J Nat Prod ; 76(12): 2316-21, 2013 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-24246038

RESUMO

Periodontitis is a disease that leads to bone destruction and represents the main cause of tooth loss in adults. The development of aggressive periodontitis has been associated with increased inflammatory response that is induced by the presence of a subgingival biofilm containing Aggregatibacter actinomycetemcomitans. The flavonoid quercetin (1) is widespread in vegetables and fruits and exhibits many biological properties for possible medical and clinical applications such as its anti-inflamatory and antioxidant effects. Thus, in the present study, the properties of 1 have been evaluated in bone loss and inflammation using a mouse periodontitis model induced by A. actinomycetemcomitans infection. Subcutaneous treatment with 1 reduced A. actinomycetemcomitans-induced bone loss and IL-1ß, TNF-α, IL-17, RANKL, and ICAM-1 production in the gingival tissue without affecting bacterial counts. These results demonstrated that quercetin exhibits protective effects in A. actinomycetemcomitans-induced periodontitis in mice by modulating cytokine and ICAM-1 production.


Assuntos
Aggregatibacter actinomycetemcomitans/patogenicidade , Periodontite/imunologia , Quercetina/farmacologia , Adulto , Perda do Osso Alveolar/induzido quimicamente , Perda do Osso Alveolar/microbiologia , Animais , Reabsorção Óssea/imunologia , Reabsorção Óssea/microbiologia , Modelos Animais de Doenças , Humanos , Molécula 1 de Adesão Intercelular/imunologia , Interleucina-17/imunologia , Interleucina-1beta/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Quercetina/química , Fator de Necrose Tumoral alfa/imunologia
10.
PLoS One ; 8(3): e58271, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23554881

RESUMO

The two-component system VicRK and the orphan regulator CovR of Streptococcus mutans co-regulate a group of virulence genes associated with the synthesis of and interaction with extracellular polysaccharides of the biofilm matrix. Knockout mutants of vicK and covR display abnormal cell division and morphology phenotypes, although the gene function defects involved are as yet unknown. Using transcriptomic comparisons between parent strain UA159 with vicK (UAvic) or covR (UAcov) deletion mutants together with electrophoretic motility shift assays (EMSA), we identified genes directly regulated by both VicR and CovR with putative functions in cell wall/surface biogenesis, including gbpB, wapE, smaA, SMU.2146c, and lysM. Deletion mutants of genes regulated by VicR and CovR (wapE, lysM, smaA), or regulated only by VicR (SMU.2146c) or CovR (epsC) promoted significant alterations in biofilm initiation, including increased fragility, defects in microcolony formation, and atypical cell morphology and/or chaining. Significant reductions in mureinolytic activity and/or increases in DNA release during growth were observed in knockout mutants of smaA, wapE, lysM, SMU.2146c and epsC, implying roles in cell wall biogenesis. WapE and lysM mutations also affected cell hydrophobicity and sensitivity to osmotic or oxidative stress. Finally, vicR, covR and VicRK/CovR-targets (gbpB, wapE, smaA, SMU.2146c, lysM, epsC) are up-regulated in UA159 during biofilm initiation, in a sucrose-dependent manner. These data support a model in which VicRK and CovR coordinate cell division and surface biogenesis with the extracellular synthesis of polysaccharides, a process apparently required for formation of structurally stable biofilms in the presence of sucrose.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Proteínas Repressoras/metabolismo , Streptococcus mutans/fisiologia , Proteínas de Bactérias/genética , Perfilação da Expressão Gênica , Proteínas Repressoras/genética , Sacarose/metabolismo
11.
J Periodontol ; 82(12): 1767-75, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21513472

RESUMO

BACKGROUND: Microbial agents in root canal systems can induce periodontal inflammation. The aims of this study are to detect anaerobic microorganisms in endodontic-periodontal lesions, determine the genetic diversity among them, and assess the simultaneous colonization of the pulp and periodontal microenvironments by a single clone. METHODS: Twenty-seven teeth of patients with endodontic-periodontal lesions were selected. Samples were spread on an agar-blood medium, the detection of each species was performed using a polymerase chain reaction, and the determination of the simultaneous presence of the same species in the microenvironments by one or more clones was determined using arbitrarily primed PCR. RESULTS: Prevotella intermedia (Pi) was the most prevalent species of the colonies in periodontal pockets, whereas Porphyromonas gingivalis (Pg) and Pi were the more prevalent in root canals. Isolates of Pi and Pg were simultaneously identified in root canals and periodontal pockets. Eighteen percent of teeth exhibited the simultaneous colonization by Pg, Tannerella forsythia (previously T. forsythensis), and Porphyromonas endodontalis in the pulp and periodontal microenvironments. The presence of these species was noted even in niches from which no colonies were isolated. Seventeen different genotypes were found in periodontal and pulp sites, with the majority of sites colonized by one or two different genotypes. A high degree of genotype similarity was found for samples of Pg isolated from only one site as well as for those isolated from both microenvironments. CONCLUSION: Different clones of Pi and Pg with a high intraspecific genotype similarity were found to colonize the same anatomic sites in endodontic-periodontal infections.


Assuntos
Bactérias Anaeróbias/genética , Cavidade Pulpar/microbiologia , Periodontite Periapical/microbiologia , Bolsa Periodontal/microbiologia , Adulto , Bactérias Anaeróbias/classificação , Bacteroides/genética , Bacteroides/isolamento & purificação , Biodiversidade , Distribuição de Qui-Quadrado , Células Clonais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tipagem Molecular , Porphyromonas endodontalis/genética , Porphyromonas endodontalis/isolamento & purificação , Porphyromonas gingivalis/genética , Porphyromonas gingivalis/isolamento & purificação , Prevotella intermedia/genética , Prevotella intermedia/isolamento & purificação
12.
Infect Immun ; 79(2): 786-96, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21078847

RESUMO

The virulence of the dental caries pathogen Streptococcus mutans relies in part on the sucrose-dependent synthesis of and interaction with glucan, a major component of the extracellular matrix of tooth biofilms. However, the mechanisms by which secreted and/or cell-associated glucan-binding proteins (Gbps) produced by S. mutans participate in biofilm growth remain to be elucidated. In this study, we further investigate GbpB, an essential immunodominant protein with similarity to murein hydrolases. A conditional knockdown mutant that expressed gbpB antisense RNA under the control of a tetracycline-inducible promoter was constructed in strain UA159 (UACA2) and used to investigate the effects of GbpB depletion on biofilm formation and cell surface-associated characteristics. Additionally, regulation of gbpB by the two-component system VicRK was investigated, and phenotypic analysis of a vicK mutant (UAvicK) was performed. GbpB was directly regulated by VicR, and several phenotypic changes were comparable between UACA2 and UAvicK, although differences between these strains existed. It was established that GbpB depletion impaired initial phases of sucrose-dependent biofilm formation, while exogenous native GbpB partially restored the biofilm phenotype. Several cellular traits were significantly affected by GbpB depletion, including altered cell shape, decreased autolysis, increased cell hydrophobicity, and sensitivity to antibiotics and osmotic and oxidative stresses. These data provide the first experimental evidence for GbpB participation in sucrose-dependent biofilm formation and in cell surface properties.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica/fisiologia , Regulon/fisiologia , Streptococcus mutans/metabolismo , Proteínas de Bactérias/genética , Regulação para Baixo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Mutação , RNA Bacteriano , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/genética , Streptococcus mutans/fisiologia , Sacarose/farmacologia
13.
J Med Microbiol ; 58(Pt 4): 476-481, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19273644

RESUMO

Transmission of Streptococcus mutans, a major dental caries pathogen, occurs mainly during the first 2.5 years of age. Children appear to acquire S. mutans mostly from their mothers, but few studies have investigated non-familial sources of S. mutans transmission. This study prospectively analysed initial S. mutans oral colonization in 119 children from nursery schools during a 1.5-year period and tracked the transmission from child to child, day-care caregiver to child and mother to child. Children were examined at baseline, when they were 5-13 months of age, and at 6-month intervals for determination of oral levels of S. mutans and development of caries lesions. Levels of S. mutans were also determined in caregivers and mothers. A total of 1392 S. mutans isolates (obtained from children, caregivers and mothers) were genotyped by arbitrarily primed PCR and chromosomal RFLP. Overall, 40.3 % of children were detectably colonized during the study, and levels of S. mutans were significantly associated with the development of caries lesions. Identical S. mutans genotypes were found in four nursery cohorts. No familial relationship existed in three of these cohorts, indicating horizontal transmission. Despite high oral levels of S. mutans identified in most of the caregivers, none of their genotypes matched those identified in the respective children. Only 50 % of children with high levels of S. mutans carried genotypes identified in their mothers. The results support previous evidence indicating that non-familial sources of S. mutans transmission exist, and indicate that this bacterium may be transmitted horizontally between children during the initial phases of S. mutans colonization in nursery environments.


Assuntos
Infecções Estreptocócicas/transmissão , Streptococcus mutans/isolamento & purificação , Adulto , Cuidadores , Portador Sadio/microbiologia , Portador Sadio/transmissão , Pré-Escolar , Estudos de Coortes , Cárie Dentária/microbiologia , Feminino , Genótipo , Humanos , Lactente , Transmissão Vertical de Doenças Infecciosas , Masculino , Mães , Estudos Prospectivos , Escolas Maternais , Infecções Estreptocócicas/microbiologia , Streptococcus mutans/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA