Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pain ; 165(2): 470-486, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37733484

RESUMO

ABSTRACT: Lipid-rich diet is the major cause of obesity, affecting 13% of the worldwide adult population. Obesity is a major risk factor for metabolic syndrome that includes hyperlipidemia and diabetes mellitus. The early phases of metabolic syndrome are often associated with hyperexcitability of peripheral small diameter sensory fibers and painful diabetic neuropathy. Here, we investigated the effect of high-fat diet-induced obesity on the activity of dorsal root ganglion (DRG) sensory neurons and pain perception. We deciphered the underlying cellular mechanisms involving the acid-sensing ion channel 3 (ASIC3). We show that mice made obese through consuming high-fat diet developed the metabolic syndrome and prediabetes that was associated with heat pain hypersensitivity, whereas mechanical sensitivity was not affected. Concurrently, the slow conducting C fibers in the skin of obese mice showed increased activity on heating, whereas their mechanosensitivity was not altered. Although ASIC3 knockout mice fed with high-fat diet became obese, and showed signs of metabolic syndrome and prediabetes, genetic deletion, and in vivo pharmacological inhibition of ASIC3, protected mice from obesity-induced thermal hypersensitivity. We then deciphered the mechanisms involved in the heat hypersensitivity of mice and found that serum from high-fat diet-fed mice was enriched in lysophosphatidylcholine (LPC16:0, LPC18:0, and LPC18:1). These enriched lipid species directly increased the activity of DRG neurons through activating the lipid sensitive ASIC3 channel. Our results identify ASIC3 channel in DRG neurons and circulating lipid species as a mechanism contributing to the hyperexcitability of nociceptive neurons that can cause pain associated with lipid-rich diet consumption and obesity.


Assuntos
Síndrome Metabólica , Estado Pré-Diabético , Animais , Camundongos , Canais Iônicos Sensíveis a Ácido/metabolismo , Dieta Hiperlipídica/efeitos adversos , Gânglios Espinais/metabolismo , Lipídeos , Síndrome Metabólica/metabolismo , Obesidade , Dor , Estado Pré-Diabético/metabolismo , Células Receptoras Sensoriais/metabolismo
2.
Glia ; 69(1): 42-60, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32659044

RESUMO

In humans, obesity is associated with brain inflammation, glial reactivity, and immune cells infiltration. Studies in rodents have shown that glial reactivity occurs within 24 hr of high-fat diet (HFD) consumption, long before obesity development, and takes place mainly in the hypothalamus (HT), a crucial brain structure for controlling body weight. Here, we sought to characterize the postprandial HT inflammatory response to 1, 3, and 6 hr of exposure to either a standard diet (SD) or HFD. HFD exposure increased gene expression of astrocyte and microglial markers (glial fibrillary acidic protein [GFAP] and Iba1, respectively) compared to SD-treated mice and induced morphological modifications of microglial cells in HT. This remodeling was associated with higher expression of inflammatory genes and differential regulation of hypothalamic neuropeptides involved in energy balance regulation. DREADD and PLX5622 technologies, used to modulate GFAP-positive or microglial cells activity, respectively, showed that both glial cell types are involved in hypothalamic postprandial inflammation, with their own specific kinetics and reactiveness to ingested foods. Thus, recurrent exacerbated postprandial inflammation in the brain might promote obesity and needs to be characterized to address this worldwide crisis.


Assuntos
Gorduras na Dieta , Microglia , Animais , Dieta Hiperlipídica/efeitos adversos , Proteína Glial Fibrilar Ácida , Hipotálamo , Inflamação , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade
3.
Artigo em Inglês | MEDLINE | ID: mdl-28855891

RESUMO

The hypothalamus is a key brain region in the regulation of energy balance as it controls food intake and both energy storage and expenditure through integration of humoral, neural, and nutrient-related signals and cues. Many years of research have focused on the regulation of energy balance by hypothalamic neurons, but the most recent findings suggest that neurons and glial cells, such as microglia and astrocytes, in the hypothalamus actually orchestrate together several metabolic functions. Because glial cells have been described as mediators of inflammatory processes in the brain, the existence of a causal link between hypothalamic inflammation and the deregulations of feeding behavior, leading to involuntary weight loss or obesity for example, has been suggested. Several inflammatory pathways that could impair the hypothalamic control of energy balance have been studied over the years such as, among others, toll-like receptors and canonical cytokines. Yet, less studied so far, chemokines also represent interesting candidates that could link the aforementioned pathways and the activity of hypothalamic neurons. Indeed, chemokines, in addition to their role in attracting immune cells to the inflamed site, have been suggested to be capable of neuromodulation. Thus, they could disrupt cellular activity together with synthesis and/or secretion of multiple neurotransmitters/mediators involved in the maintenance of energy balance. This review discusses the different inflammatory pathways that have been identified so far in the hypothalamus in the context of feeding behavior and body weight control impairments, with a particular focus on chemokines signaling that opens a new avenue in the understanding of the major role played by inflammation in obesity.

4.
EMBO Rep ; 17(12): 1738-1752, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27733491

RESUMO

Sickness behavior defines the endocrine, autonomic, behavioral, and metabolic responses associated with infection. While inflammatory responses were suggested to be instrumental in the loss of appetite and body weight, the molecular underpinning remains unknown. Here, we show that systemic or central lipopolysaccharide (LPS) injection results in specific hypothalamic changes characterized by a precocious increase in the chemokine ligand 2 (CCL2) followed by an increase in pro-inflammatory cytokines and a decrease in the orexigenic neuropeptide melanin-concentrating hormone (MCH). We therefore hypothesized that CCL2 could be the central relay for the loss in body weight induced by the inflammatory signal LPS. We find that central delivery of CCL2 promotes neuroinflammation and the decrease in MCH and body weight. MCH neurons express CCL2 receptor and respond to CCL2 by decreasing both electrical activity and MCH release. Pharmacological or genetic inhibition of CCL2 signaling opposes the response to LPS at both molecular and physiologic levels. We conclude that CCL2 signaling onto MCH neurons represents a core mechanism that relays peripheral inflammation to sickness behavior.


Assuntos
Quimiocina CCL2/genética , Quimiocina CCL2/metabolismo , Hormônios Hipotalâmicos/metabolismo , Hipotálamo/metabolismo , Inflamação/metabolismo , Melaninas/metabolismo , Neurônios/metabolismo , Hormônios Hipofisários/metabolismo , Transdução de Sinais , Animais , Quimiocina CCL2/deficiência , Quimiocina CCL2/imunologia , Citocinas/biossíntese , Citocinas/genética , Citocinas/imunologia , Hormônios Hipotalâmicos/genética , Hormônios Hipotalâmicos/imunologia , Comportamento de Doença , Lipopolissacarídeos/imunologia , Melaninas/genética , Melaninas/imunologia , Camundongos , Neurônios/imunologia , Hormônios Hipofisários/genética , Hormônios Hipofisários/imunologia , Receptores CCR2/metabolismo , Redução de Peso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA