Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 8(28): eabq2811, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35857523

RESUMO

Understanding the chirality of molecular reaction pathways is essential for a broad range of fundamental and applied sciences. However, the current ability to probe chirality on the time scale of primary processes underlying chemical reactions remains very limited. Here, we demonstrate time-resolved photoelectron circular dichroism (TRPECD) with ultrashort circularly polarized vacuum-ultraviolet (VUV) pulses from a tabletop source. We demonstrate the capabilities of VUV-TRPECD by resolving the chirality changes in time during the photodissociation of atomic iodine from two chiral molecules. We identify several general key features of TRPECD, which include the ability to probe dynamical chirality along the complete photochemical reaction path, the sensitivity to the local chirality of the evolving scattering potential, and the influence of electron scattering off dissociating photofragments. Our results are interpreted by comparison with high-level ab-initio calculations of transient PECDs from molecular photoionization calculations. Our experimental and theoretical techniques define a general approach to femtochirality.

3.
J Chem Inf Model ; 59(5): 1826-1838, 2019 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-30916954

RESUMO

Experimental determination of the absolute stereochemistry of chiral molecules has been a fundamental challenge in natural sciences for decades. Vibrational circular dichroism (VCD) spectroscopy represents an attractive alternative to traditional methods like X-ray crystallography due to the use of molecules in solution. The interpretation of measured VCD spectra and thus the assignment of the absolute configuration relies on quantum-mechanical calculations. While such calculations are straightforward for rigid molecules with a single conformation, the need to estimate the correct conformational ensemble and energy landscape to obtain the appropriate theoretical spectra poses significant challenges for flexible molecules. In this work, we present the development of a VCD spectra alignment (VSA) algorithm to compare theoretical and experimental VCD spectra. The algorithm determines which enantiomer is more likely to reproduce the experimental spectrum and thus allows the correct assignment of the absolute stereochemistry. The VSA algorithm is successfully applied to determine the absolute chirality of highly flexible molecules, including commercial drug substances. Furthermore, we show that the computational cost can be reduced by performing the full frequency calculation only for a reduced set of conformers. The presented approach has the potential to allow the determination of the absolute configuration of chiral molecules in a robust and efficient manner.


Assuntos
Dicroísmo Circular/métodos , Algoritmos , Modelos Moleculares , Conformação Molecular , Preparações Farmacêuticas/química , Estereoisomerismo
4.
Chimia (Aarau) ; 72(6): 365, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29941069
5.
Chimia (Aarau) ; 72(6): 384-388, 2018 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-29941073

RESUMO

It is a particularly challenging task in stereochemistry to determine the absolute configuration of chiral molecules, i.e. to assign to a given sample the microscopic enantiomeric structure. In recent years, Coulomb Explosion Imaging (CEI) has been shown to yield directly the absolute configuration of small molecules in the gas phase. This contribution describes the experimental basics of this approach, highlights the most significant results and discusses limitations. A short discussion on extending Coulomb Explosion Imaging beyond analytic aspects to fundamental questions of molecular chirality concludes this review.

6.
RSC Adv ; 8(6): 2872, 2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-35543877

RESUMO

[This corrects the article DOI: 10.1039/C7RA09727A.].

7.
Appl Opt ; 56(14): 4076-4084, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-29047539

RESUMO

Fourier-transform infrared (FTIR) spectra can show artifacts, for example, in the vicinity of the overtone when light is doubly modulated. Technical approaches, i.e., modifications to the spectrometer setup, have been devised in order to reduce those artifacts. Elimination of the artifacts was achieved only partly but at the expense of a loss of intensity or an increase in the noise level. We devised a computational demodulation scheme that is capable of almost fully reducing the artifacts with neither a loss of spectroscopic information nor an increase in the noise level. This has been demonstrated for the FTIR absorption spectra in the overtone regions of HCl(g) and CH4(g).

8.
Chemphyschem ; 17(16): 2465-72, 2016 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-27298209

RESUMO

The absolute configuration of individual small molecules in the gas phase can be determined directly by light-induced Coulomb explosion imaging (CEI). Herein, this approach is demonstrated for ionization with a single X-ray photon from a synchrotron light source, leading to enhanced efficiency and faster fragmentation as compared to previous experiments with a femtosecond laser. In addition, it is shown that even incomplete fragmentation pathways of individual molecules from a racemic CHBrClF sample can give access to the absolute configuration in CEI. This leads to a significant increase of the applicability of the method as compared to the previously reported complete break-up into atomic ions and can pave the way for routine stereochemical analysis of larger chiral molecules by light-induced CEI.

9.
J Phys Chem A ; 119(51): 12805-22, 2015 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-26513572

RESUMO

We report detailed calculations of the quantum wavepacket dynamics of Cl-O-O-Cl, which serves as a prototype molecule for the stereomutation dynamics of an axially chiral molecule. We include the effects both from electroweak parity violation and from the interaction with a coherent monochromatic laser field. We use the quasiadiabatic channel reaction path Hamiltonian approach to approximately solve the six-dimensional Schrödinger equation describing the vibrational motion, including rotation by an effective Hamiltonian. We calculate time-dependent wave functions based on the time-dependent Schrödinger equation. We study stereomutation dynamics due to tunneling motion and laser-induced population transfer and show results on efficient methods for selectively populating single molecular states in chiral molecules by frequency-modulated laser pulses. We also discuss laser-induced stereomutation (LISM) and a process that may be called resonance Raman induced stereomutation (RRISM). The results are discussed in relation to current experimental attempts to measure the parity violating energy difference ΔpvE between the enantiomers of chiral molecules. Furthermore, we show detailed quantitative simulations of a selection of well-defined parity levels in chiral molecules ("parity isomers") that form the basis of a possible measurement of ΔpvE by the time evolution of parity.

10.
Science ; 341(6150): 1096-100, 2013 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-24009390

RESUMO

Bijvoet's method, which makes use of anomalous x-ray diffraction or dispersion, is the standard means of directly determining the absolute (stereochemical) configuration of molecules, but it requires crystalline samples and often proves challenging in structures exclusively comprising light atoms. Herein, we demonstrate a mass spectrometry approach that directly images the absolute configuration of individual molecules in the gas phase by cold target recoil ion momentum spectroscopy after laser ionization-induced Coulomb explosion. This technique is applied to the prototypical chiral molecule bromochlorofluoromethane and the isotopically chiral methane derivative bromodichloromethane.

11.
Annu Rev Phys Chem ; 59: 741-69, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18173376

RESUMO

We review the high-resolution spectroscopic approach toward the study of intramolecular dynamics, emphasizing molecular parity violation. Theoretical work in the past decade has shown that parity-violating potentials in chiral molecules are much larger (typically one to two orders of magnitude) than anticipated on the basis of older theories. This makes experimental approaches toward small molecular parity-violating effects promising. The concepts and results of intramolecular dynamics derived from spectroscopy are analyzed as a sequence of symmetry breakings. We summarize the concepts of symmetry breakings (de facto and de lege) in view of parity violation in chiral molecules. The experimental schemes and the current status of spectroscopic experiments on molecular parity violation are established. We discuss the promises of detecting and accurately measuring parity-violating energy differences Delta(pv) E on the order of 10(11) J mol(1) (approximately 100 aeV) in enantiomers of chiral molecules with regard to their contribution to fundamental physics in the framework of the standard model of particle physics and more speculative future fundamental symmetry tests such as for the combined charge conjugation, parity, and time-reversal (CPT) symmetry violation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA