Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 60
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38184758

RESUMO

BACKGROUND: Pre-biopsy multiparametric magnetic resonance imaging (mpMRI) of the prostate is used to conduct targeted prostate biopsy (TB), guided by ultrasound and registered (fused) to the MRI. Systematic biopsy (SB) continues to be used together with TB or in mpMRI-negative patients. There is insufficient evidence on how to use SB to inform clinical decision-making in the mpMRI era. The purpose of this study was to estimate the effect of prostate volume and number of SB cores on sampling clinically significant prostate cancer (csPCa) using a simulation method based on clinical data. METHODS: SBs were simulated using data from 42 patients enrolled in a transrectal ultrasound robot-assisted biopsy trial. Linear mixed models were used to examine the relationship between the number of SB cores and prostate volume on 1) clinically significant cancer detection probability (csCDP) and 2) percent of mpMRI depicted regions of interest (ROIs) sampled with the SB. RESULTS: Median values and interquartile range (IQR) were 47.16 cm3 (35.61-65.57) for prostate volume, 0.57 cm3 (0.39-0.83) for ROI volume, and 4.0 (2-4) for PI-RADS v2.1 scores on MRI. csCDP increased with the increasing number of simulated SB cores and decreased substantially with larger prostate volume. Similarly, the percent of ROIs sampled increased with the increasing number of simulated SB cores and was lower for prostate volumes ≥60 cm3 compared to glands <60 cm3. CONCLUSIONS: The effect of the number of SBs performed on detecting csPCa varies largely with gland volume. The common 12-core SB can achieve adequate cancer detection and sampling of ROIs in smaller glands, but not in larger glands. In addition to TB or in mpMRI-negative patients, the number of SB cores can be adjusted to prostate volume. Performing 12-core SB alone in ≥60 cm3 glands results in inadequate sampling and potential PCa underdiagnosis.

2.
IEEE Trans Biomed Eng ; 71(1): 36-44, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37390003

RESUMO

OBJECTIVE: Use of medical devices in the magnetic resonance environment is regulated by standards that include the ASTM-F2213 magnetically induced torque. This standard prescribes five tests. However, none can be directly applied to measure very low torques of slender lightweight devices such as needles. METHODS: We present a variant of an ASTM torsional spring method that makes a "spring" of 2 strings that suspend the needle by its ends. The magnetically induced torque on the needle causes it to rotate. The strings tilt and lift the needle. At equilibrium, the magnetically induced potential energy is balanced by the gravitational potential energy of the lift. Static equilibrium allows calculating the torque from the needle rotation angle, which is measured. Moreover, a maximum rotation angle corresponds to the maximum acceptable magnetically induced torque, under the most conservative ASTM acceptability criterion. A simple apparatus using the 2-string method is shown, it can be 3D printed, and the design files are shared. RESULTS: The analytical methods were tested against a numeric dynamic model, showing perfect concordance. The method was then tested experimentally in 1.5T and 3T MRI with commercial biopsy needles. Numeric test errors were immeasurably small. Torques between 0.0001 Nm and 0.0018 Nm were measured in MRI with 7.7% maximum difference between tests. The cost to make the apparatus is 58USD and design files are shared. CONCLUSION: The apparatus is simple and inexpensive and provides good accuracy as well. SIGNIFICANCE: The 2-string method provides a solution to measure very low torques in the MRI.


Assuntos
Imageamento por Ressonância Magnética , Torque , Imageamento por Ressonância Magnética/métodos , Rotação , Espectroscopia de Ressonância Magnética
3.
Int J Comput Assist Radiol Surg ; 19(3): 405-409, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38148438

RESUMO

PURPOSE: Bone biopsies are currently conducted under computed tomography (CT) guidance using a battery-powered drill to obtain tissue samples for diagnosis of suspicious bone lesions. However, this procedure is suboptimal as images produced under CT lack soft tissue discrimination and involve ionizing radiation. Therefore, our team developed an MRI-safe pneumatic drill to translate this clinical workflow into the MR environment, which can improve target visualization and eliminate radiation exposure. We compare drill times and quality of samples between the 2 drills using animal bones. METHODS: Five porcine spare rib bones were obtained from a butcher shop. Each bone was drilled twice using the Arrow OnControl battery-powered drill and twice using our pneumatically actuated drill. For this study, we used an 11-gauge bone biopsy needle set with an internal core capturing thread. A stopwatch recorded the overall time of drilling for each specimen obtained. RESULTS: All 20 samples collected contained a high-quality inner core and cortex. The total average time for drilling with the pneumatic drill was 8.5 s (+ / - 2.5 s) and 7.1 s (+ / - 1.4 s) with the standard battery-powered drill. CONCLUSION: Both drills worked well and were able to obtain comparable specimens. The pneumatic drill took slightly longer, 1.39 s on average, but this extra time would not be significant in clinical practice. We plan to use the pneumatic drill to enable MRI-safe bone biopsy for musculoskeletal lesions. Biopsy under MRI would provide excellent lesion visualization with no ionizing radiation.


Assuntos
Doenças Ósseas , Osso e Ossos , Humanos , Osso e Ossos/diagnóstico por imagem , Osso e Ossos/cirurgia , Osso e Ossos/patologia , Biópsia/métodos , Tomografia Computadorizada por Raios X , Imageamento por Ressonância Magnética
5.
J Endourol ; 34(9): 900-904, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32292044

RESUMO

Introduction: Accurate estimation of stone fragment size during ureteroscopic lithotripsy procedures facilitates operative efficiency and predicts the safety of fragment extraction or spontaneous passage. Using a novel stone measurement software application, this study assesses the feasibility of performing integrated real-time digital stone measurement during ureteroscopy. Methods: This workflow feasibility study was conducted in two phases. First, in the ex vivo simulation, mock stone fragments were placed in a renal collecting system training model. A basket extraction task was performed using a digital ureteroscope, with and without digital stone measurement. The time required to perform the tasks was recorded and compared. Second, in the in vivo workflow trial, adult patients undergoing ureteroscopic stone procedures were prospectively enrolled. Intraoperative measurements of stone fragments were performed to determine the time required to complete the measurements. Technical failures and perioperative complications were recorded. Results: In the ex vivo simulation, 20 mock stones mimicking varied fragmentation conditions were tested in the training model. The mean completion time of the basketing task without vs with digital stone measurement was 16.5 seconds (range 10.2-33.7) vs 38.9 seconds (range 27.2-60.0). Mean additional time required to measure stones was 22.3 seconds (range 8.4-42.7). In the in vivo workflow trial, nine patients undergoing ureteroscopy were enrolled. A median of five fragments (range 3-10) were measured in each patient. Mean completion time for each measurement was 10.1 seconds (range 8.2-12.8). Mean total time required to perform digital measurement per procedure was 50.8 seconds (range 25.9-99.0). No technical failures or clinical complications were observed. Conclusions: Integrating real-time digital stone measurement during ureteroscopy is safe and feasible. The findings support clinical trials of digital stone measurement to enhance intraoperative decision-making during ureteroscopy.


Assuntos
Cálculos Renais , Cálculos Ureterais , Adulto , Estudos de Viabilidade , Humanos , Cálculos Renais/cirurgia , Cálculos Ureterais/cirurgia , Ureteroscopia , Fluxo de Trabalho
6.
J Endourol ; 34(5): 619-623, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32164449

RESUMO

Objective: In recent years, there has been increasing interest in the use of ultrasound guidance for endoscopic and percutaneous procedures. Kidney mockups could be used for training, however, available mockups are normally incompatible with ultrasound imaging. We developed a reproducible method to manufacture an ultrasound-compatible collecting system mockup that can be made at urology laboratories. Methods: Positive and negative molding methods were used. A three-dimensional (3D) digital model of a urinary collecting system and the overlying skin surface were segmented from computed tomography. A containment mold (negative) was made following the shape of the skin surface using 3D printing. A collecting system mold (positive) was also 3D printed, but made of a dissolvable material. The containment mold was filled with a gelatin formula with the collecting system mold submersed in situ within. After the gelatin solidified, a solution was used to dissolve the collecting system mold, but not the gelatin, leaving a cavity with the shape of the collecting system. The gelatin was extracted from the container mockup and the collecting system cavity was filled with water. The mockup was imaged with ultrasound to assess echogenicity and suitability for simulating ultrasound-guided procedures. Results: A clear shape corresponding to the collecting system was observed inside the gel structure. Structural integrity was maintained with no observable manufacturing marks or separation seams. Ultrasound images of the mockup demonstrated clear differentiation at the gelatin/water interface. A mock stone was placed in the collecting system and needle targeted to simulate percutaneous needle access. Conclusion: We developed a simple method to manufacture a personalized mockup of the renal collecting system of a patient that can be used for ultrasound-guided percutaneous needle access. Generic collecting system mockups can be used for training, and patient-specific models can be used to simulate and decide the best access path before a clinical case.


Assuntos
Cálculos Renais , Nefrostomia Percutânea , Urologia , Humanos , Rim/diagnóstico por imagem , Ultrassonografia
7.
Minim Invasive Ther Allied Technol ; 28(4): 199-205, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30822190

RESUMO

Objective: Needle insertion is a common component of most diagnostic and therapeutic interventions. Needles with asymmetrically sharpened points such as the bevel point are ubiquitous. Their insertion path is typically curved due to the rudder effect at the point. However, the common planned path is straight, leading to targeting errors. We present a simple technique that may substantially reduce these errors. The method was inspired by practical experience, conceived mathematically, and refined experimentally. Methods: Targeting errors are reduced by flipping the bevel on the opposite side (rotating the needle 180° about its axis), at a certain depth during insertion. The ratio of the flip depth to the full depth of insertion is defined as the flip depth ratio (FDR). Based on a model, FDR is constant 0.3. Results: Experimentally, the ratio depends on the needle diameter, 0.35 for 20Ga and 0.45 for 18Ga needles. Thinner needles should be flipped a little shallower, but never less than 0.3. Conclusion: Practically, a physician may expect to reduce ∼80% of needle deflection errors by simply flipping the needle. The technique may be used by hand or with guidance devices.


Assuntos
Técnicas e Procedimentos Diagnósticos/instrumentação , Injeções/instrumentação , Injeções/métodos , Fenômenos Mecânicos , Agulhas , Punções/instrumentação , Punções/métodos , Humanos , Modelos Teóricos
8.
IEEE Trans Biomed Eng ; 66(9): 2527-2537, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30624210

RESUMO

We present a robot-assisted approach for transrectal ultrasound (TRUS) guided prostate biopsy. The robot is a hands-free probe manipulator that moves the probe with the same 4 DoF that are used manually. Software was developed for three-dimensional (3-D) imaging, biopsy planning, robot control, and navigation. Methods to minimize the deformation of the prostate caused by the probe at 3-D imaging and needle targeting were developed to reduce biopsy targeting errors. We also present a prostate coordinate system (PCS). The PCS helps defining a systematic biopsy plan without the need for prostate segmentation. Comprehensive tests were performed, including two bench tests, one imaging test, two in vitro targeting tests, and an IRB-approved clinical trial on five patients. Preclinical tests showed that image-based needle targeting can be accomplished with accuracy on the order of 1 mm. Prostate biopsy can be accomplished with minimal TRUS pressure on the gland and submillimetric prostate deformations. All five clinical cases were successful with an average procedure time of 13 min and millimeter targeting accuracy. Hands-free TRUS operation, transrectal TRUS guided prostate biopsy with minimal prostate deformations, and the PCS-based biopsy plan are novel methods. Robot-assisted prostate biopsy is safe and feasible. Accurate needle targeting has the potential to increase the detection of clinically significant prostate cancer.


Assuntos
Biópsia Guiada por Imagem/métodos , Próstata , Neoplasias da Próstata , Procedimentos Cirúrgicos Robóticos/métodos , Ultrassonografia/métodos , Desenho de Equipamento , Humanos , Biópsia Guiada por Imagem/instrumentação , Masculino , Próstata/diagnóstico por imagem , Próstata/cirurgia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Neoplasias da Próstata/cirurgia , Procedimentos Cirúrgicos Robóticos/instrumentação , Ultrassonografia/instrumentação
9.
Int J Comput Assist Radiol Surg ; 14(1): 147-156, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30456451

RESUMO

RATIONALE AND OBJECTIVES: We have designed and constructed an MR-safe robot made entirely of nonmetallic components with pneumatic actuators and optical encoders. The robot was developed to enable bone biopsies to be performed under magnetic resonance imaging (MRI) guidance in pediatric patients. The purpose of this study was to show the feasibility of using the robot for biopsy of the femur and tibia in a cadaver leg. Our long-term goal is to eliminate radiation exposure during bone biopsy procedures and provide more timely and accurate diagnosis for children with bone cancers and bone infections. METHODS: The MR-safe robot was mounted on the MRI table. A cadaver leg was procured from an anatomy supply house and placed on the MRI table. All required hospital precautions for infection control were taken. A total of 10 biopsy targets were sampled using MRI guidance: five from the femur and five from the tibia. A handheld, commercially available battery-powered bone drill was used to facilitate drilling through the cortex. After the study, the leg was scanned with CT to better visualize and document the bone biopsy sites. Both the MRI and CT images were used to analyze the results. RESULTS: All of the targets were successfully reached with an average targeting accuracy of 1.43 mm. A workflow analysis showed the average time for the first biopsy was 41 min including robot setup time and 22 min for each additional biopsy including the time for the repeat MRI scan used to confirm accurate targeting. The robot was shown to be MRI transparent, as no image quality degradation due to the use of the robot was detected. CONCLUSION: The results showed the feasibility of using an MR-safe robotic system to assist the interventional radiologist in performing precision bone biopsy under MRI guidance. Future work will include developing an MR-safe drill, improving the mounting of the robot and fixation of the leg, and moving toward first in child clinical trials.


Assuntos
Osso e Ossos/patologia , Imageamento por Ressonância Magnética/métodos , Robótica , Biópsia/métodos , Osso e Ossos/diagnóstico por imagem , Cadáver , Estudos de Viabilidade , Humanos , Tomografia Computadorizada por Raios X
10.
J Endourol ; 32(8): 685-691, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29890914

RESUMO

INTRODUCTION: CT is the gold standard for visualizing renal and ureteral calculi. CT three-dimensional reformatting allows for automatic, accurate, and reliable measurement of stone size, volume, density, and location. In this study, we aimed to develop and test a software platform capable of calculating a battery of clinically important urinary stone parameters at the point-of-care (POC). METHODS: The syngo Calcium Scoring (Siemens Corporation) algorithm was modified to identify calcium-based stones using an attenuation threshold (250 HU) within a region of interest. Information automatically obtained after reconstruction included voxel sum and calculated volume, maximum diameter, largest diameter in the x, y, and z planes, cumulative diameter, distribution of attenuation in HU, and position relative to the skin for calculation of the skin-to-stone distance (SSD). This algorithm was packaged into a stand-alone application (MATLAB 9.1). From April 2017 to May 2017, all patients undergoing a noncontrast CT of the abdomen or the abdomen and pelvis at the Johns Hopkins Hospital were eligible for inclusion in this validation cohort. RESULTS: A total of 55 index renal stones were included. The mean volume calculated by voxel sum was 216.53 mm3 (standard deviation [SD] ±616.19, range 1.50-4060.13). The mean volume calculated using the Ackermann's formula and for a sphere was 232.96 mm3 (SD ± 702.65, range 1.24-4074.04) and 1214.63 mm3 (SD ± 4233.41, range 1.77-25,246.40), respectively. The mean largest diameter in any one direction was 6.95 mm (SD ± 7.31, range 1.50-36.40). The maximum density of the stones ranged from 164 to 1725 HU. The mean SSD at the shortest possible point was 14.19 cm (SD ± 6.13, range 6.67-31.28). CONCLUSIONS: We developed a stand-alone platform with a simple easy-to-use interface, which will allow any user the ability to calculate a battery of clinically important urinary stone parameters from CT imaging at the POC. This program is now freely available online.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Cálculos Renais/diagnóstico por imagem , Tomografia Computadorizada por Raios X , Cálculos Ureterais/diagnóstico por imagem , Cálculos Urinários/diagnóstico por imagem , Algoritmos , Cálcio , Diagnóstico por Computador/métodos , Humanos , Rim , Reconhecimento Automatizado de Padrão , Radiografia Abdominal , Pele/patologia , Software , Interface Usuário-Computador
11.
Int J Med Robot ; 14(2)2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29318725

RESUMO

BACKGROUND: In image-guided robotic interventions, an error component is related to the positioning error of the manipulator. Therefore, measuring the kinematic error is required during robot development. However, no specialized measurement device exists for this task. This study explores the possibility of using optical tracking for robot measurement. METHODS: A CNC machine is used to position an optical marker, generating a gold standard reference. Repeated position measurements are acquired with an NDI Polaris Hybrid® optical tracker at each static location, and averaged. These measurements are compared to the reference set. RESULTS: Averaging repeated static position measurements improves precision (200-500 samples). Measurement accuracy ranges between 44 µm and 137 µm in close proximity of the tracker. CONCLUSIONS: Repeated static position measurements in the near field of view enable the optical tracker to outperform its general-purpose accuracy specification. Optical tracking may be used to test robot kinematics with a high degree of accuracy.


Assuntos
Robótica , Fenômenos Biomecânicos , Humanos , Reprodutibilidade dos Testes , Tamanho da Amostra
12.
IEEE Trans Biomed Eng ; 65(1): 165-177, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28459678

RESUMO

We report the development of a new robotic system for direct image-guided interventions (DIGI; images acquired at the time of the intervention). The manipulator uses our previously reported pneumatic step motors and is entirely made of electrically nonconductive, nonmetallic, and nonmagnetic materials. It orients a needle-guide with two degrees of freedom (DoF) about a fulcrum point located below the guide using an innovative remote center of motion parallelogram type mechanism. The depth of manual needle insertion is preset with a third DoF, located remotely of the manipulator. Special consideration was given to the kinematic accuracy and the structural stiffness. The manipulator includes registration markers for image-to-robot registration. Based on the images, it may guide needles, drills, or other slender instruments to a target (OD < 10 mm). Comprehensive preclinical tests were performed. The manipulator is MR safe (ASTM F2503-13). Electromagnetic compatibility (EMC) testing (IEC 60601-1-2) of the system shows that it does not conduct or radiate EM emissions. The change in the signal to noise ratio of the MRI due to the presence and motion of the robot in the scanner is below 1%. The structural stiffness at the needle-guide is 33 N/mm. The angular accuracy and precision of the manipulator itself are 0.177° and 0.077°. MRI-guided targeting accuracy and precision in vitro were 1.71 mm and 0.51 mm, at an average target depth of ∼38 mm, with no adjustments. The system may be suitable for DIGI where [mm] accuracy lateral to the needle (2D) or [mm] in 3D is acceptable. The system is also multi-imager compatible and could be used with other imaging modalities.


Assuntos
Imageamento por Ressonância Magnética/instrumentação , Procedimentos Cirúrgicos Robóticos/instrumentação , Cirurgia Assistida por Computador/instrumentação , Cirurgia Assistida por Computador/métodos , Algoritmos , Desenho de Equipamento , Modelos Teóricos , Reprodutibilidade dos Testes
13.
Acad Radiol ; 25(1): 74-81, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29074334

RESUMO

RATIONALE AND OBJECTIVES: Our research team has developed a magnetic resonance imaging (MRI)-compatible robot for long bone biopsy. The robot is intended to enable a new workflow for bone biopsy in pediatrics under MRI imaging. Our long-term objectives are to minimize trauma and eliminate radiation exposure when diagnosing children with bone cancers and bone infections. This article presents our robotic systems, phantom accuracy studies, and workflow analysis. MATERIALS AND METHODS: This section describes several aspects of our work including the envisioned clinical workflow, the MRI-compatible robot, and the experimental setup. The workflow consists of five steps and is intended to enable the entire procedure to be completed in the MRI suite. The MRI-compatible robot is MR Safe, has 3 degrees of freedom, and a remote center of motion mechanism for orienting a needle guide. The accuracy study was done in a Siemens Aera 1.5T scanner with a long bone phantom. Four targeting holes were drilled in the phantom. RESULTS: Each target was approached twice at slightly oblique angles using the robot needle guide for a total of eight attempts. A workflow analysis showed the average time for each targeting attempt was 32 minutes, including robot setup time. The average 3D targeting error was 1.39 mm with a standard deviation of 0.40 mm. All of the targets were successfully reached. CONCLUSION: The results showed the ability of the robotic system in assisting the radiologist to precisely target a bone phantom in the MRI environment. The robot system has several potential advantages for clinical application, including the ability to work at the MRI isocenter and serve as a steady and precise guide.


Assuntos
Osso e Ossos/patologia , Biópsia Guiada por Imagem/métodos , Imageamento por Ressonância Magnética , Procedimentos Cirúrgicos Robóticos , Humanos , Modelos Biológicos , Imagens de Fantasmas , Fluxo de Trabalho
14.
J Endourol ; 32(1): 34-39, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29084456

RESUMO

INTRODUCTION: Currently, stone size cannot be accurately measured while performing flexible ureteroscopy (URS). We developed novel software for ureteroscopic, stone size measurement, and then evaluated its performance. METHODS: A novel application capable of measuring stone fragment size, based on the known distance of the basket tip in the ureteroscope's visual field, was designed and calibrated in a laboratory setting. Complete URS procedures were recorded and 30 stone fragments were extracted and measured using digital calipers. The novel software program was applied to the recorded URS footage to obtain ureteroscope-derived stone size measurements. These ureteroscope-derived measurements were then compared with the actual-measured fragment size. RESULTS: The median longitudinal and transversal errors were 0.14 mm (95% confidence interval [CI] 0.1, 0.18) and 0.09 mm (95% CI 0.02, 0.15), respectively. The overall software accuracy and precision were 0.17 and 0.15 mm, respectively. The longitudinal and transversal measurements obtained by the software and digital calipers were highly correlated (r = 0.97 and 0.93). Neither stone size nor stone type was correlated with error measurements. CONCLUSIONS: This novel method and software reliably measured stone fragment size during URS. The software ultimately has the potential to make URS safer and more efficient.


Assuntos
Diagnóstico por Computador/métodos , Ureteroscopia/métodos , Cálculos Urinários/diagnóstico , Adulto , Idoso , Humanos , Masculino , Pessoa de Meia-Idade , Software , Ureteroscópios , Ureteroscopia/instrumentação , Cálculos Urinários/diagnóstico por imagem
15.
IEEE ASME Trans Mechatron ; 22(1): 115-126, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28867930

RESUMO

Compatibility of mechatronic devices with the MR environment has been a very challenging engineering task. After over a decade of developments, we report the successful translation to clinical trials of our MR Safe robot technology. MrBot is a 6-degree-of-freedom, pneumatically actuated robot for transperineal prostate percutaneous access, built exclusively of electrically nonconductive and nonmagnetic materials. Its extensive pre-clinical tests have been previously reported. Here, we present the latest technology developments, an overview of the regulatory protocols, and technically related results of the clinical trial. The FDA has approved the MrBot for the biopsy trial, which was successfully performed in 5 patients. With no trajectory corrections, and no unsuccessful attempts to target a site, the robot achieved an MRI based needle targeting accuracy of 2.55 mm. To the best of our knowledge, this is the first robot approved by the FDA for the MR environment. The results confirm that it is possible to perform safe and accurate robotic manipulation in the MRI scanner, and the development of MR Safe robots is no longer a daunting technical challenge.

16.
Urology ; 109: 216-221, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28735018

RESUMO

OBJECTIVE: To evaluate safety and feasibility in a first-in-human trial of a direct magnetic resonance imaging (MRI)-guided prostate biopsy using a novel robotic device. METHODS: MrBot is an MRI-safe robotic device constructed entirely with nonconductive, nonmetallic, and nonmagnetic materials and developed by our group. A safety and feasibility clinical trial was designed to assess the safety and feasibility of a direct MRI-guided biopsy with MrBot and to determine its targeting accuracy. Men with elevated prostate-specific antigen levels, prior negative prostate biopsies, and cancer-suspicious regions (CSRs) on MRI were enrolled in the study. Biopsies targeting CSRs, in addition to sextant locations, were performed. RESULTS: Five men underwent biopsy with MrBot. Two men required Foley catheter insertion after the procedure, with no other complications or adverse events. Even though this was not a study designed to detect prostate cancer, biopsies confirmed the presence of a clinically significant cancer in 2 patients. On a total of 30 biopsy sites, the robot achieved an MRI-based targeting accuracy of 2.55 mm and a precision of 1.59 mm normal to the needle, with no trajectory corrections and no unsuccessful attempts to target a site. CONCLUSION: Robot-assisted MRI-guided prostate biopsy appears safe and feasible. This study confirms that a clinically significant prostate cancer (≥5-mm radius, 0.5 cm3) depicted in MRI may be accurately targeted. Direct confirmation of needle placement in the CSR may present an advantage over fusion-based technology and gives more confidence in a negative biopsy result. Additional study is warranted to evaluate the efficacy of this approach.


Assuntos
Imagem por Ressonância Magnética Intervencionista , Próstata/diagnóstico por imagem , Próstata/patologia , Neoplasias da Próstata/diagnóstico por imagem , Neoplasias da Próstata/patologia , Procedimentos Cirúrgicos Robóticos/instrumentação , Idoso , Desenho de Equipamento , Estudos de Viabilidade , Humanos , Biópsia Guiada por Imagem , Imagem por Ressonância Magnética Intervencionista/efeitos adversos , Masculino , Pessoa de Meia-Idade , Projetos Piloto , Procedimentos Cirúrgicos Robóticos/efeitos adversos
17.
Med Oncol ; 34(2): 22, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28058627

RESUMO

The cancer community continues to search for an efficient and cost-effective technique to isolate and characterize circulating cells (CTCs) as a 'real-time liquid biopsy'. Existing methods to isolate and analyze CTCs require various transfer, wash, and staining steps that can be time consuming, expensive, and led to the loss of rare cells. To overcome the limitations of existing CTC isolation strategies, we have developed an inexpensive 'lab on a chip' device for the enrichment, staining, and analysis of rare cell populations. This device utilizes immunomagnetic positive selection of antibody-bound cells, isolation of cells through an immiscible interface, and filtration. The isolated cells can then be stained utilizing immunofluorescence or used for other downstream detection methods. We describe the construction and initial preclinical testing of the device. Initial tests suggest that the device may be well suited for the isolation of CTCs and could allow the monitoring of cancer progression and the response to therapy over time.


Assuntos
Separação Imunomagnética/instrumentação , Separação Imunomagnética/métodos , Células Neoplásicas Circulantes/patologia , Linhagem Celular Tumoral , Humanos , Dispositivos Lab-On-A-Chip , Masculino , Neoplasias da Próstata/patologia , Propriedades de Superfície
18.
Minim Invasive Ther Allied Technol ; 26(2): 78-85, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27760001

RESUMO

OBJECTIVE: The common sextant prostate biopsy schema lacks a three-dimensional (3D) geometric definition. The study objective was to determine the influence of the geometric distribution of the cores on the detection probability of prostate cancer (PCa). METHODS: The detection probability of significant (>0.5 cm3) and insignificant (<0.2 cm3) tumors was quantified based on a novel 3D capsule model of the biopsy sample. The geometric distribution of the cores was optimized to maximize the probability of detecting significant cancer for various prostate sizes (20-100cm3), number of biopsy cores (6-40 cores) and biopsy core lengths (14-40 mm) for transrectal and transperineal biopsies. RESULTS: The detection of significant cancer can be improved by geometric optimization. With the current sextant biopsy, up to 20% of tumors may be missed at biopsy in a 20 cm3 prostate due to the schema. Higher number and longer biopsy cores are required to sample with an equal detection probability in larger prostates. Higher number of cores increases both significant and insignificant tumor detection probability, but predominantly increases the detection of insignificant tumors. CONCLUSION: The study demonstrates mathematically that the geometric biopsy schema plays an important clinical role, and that increasing the number of biopsy cores is not necessarily helpful.


Assuntos
Biópsia por Agulha/métodos , Imageamento Tridimensional/métodos , Neoplasias da Próstata/diagnóstico , Humanos , Masculino , Probabilidade , Neoplasias da Próstata/patologia
19.
BJU Int ; 113(6): 977-85, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24118992

RESUMO

OBJECTIVES: To study the feasibility and safety of using a magnetic resonance imaging (MRI)-safe robot for assisting MRI-guided transrectal needle placement and biopsy in the prostate, using a canine model. To determine the accuracy and precision afforded by the use of the robot while targeting a desired location in the organ. MATERIALS AND METHODS: In a study approved by the Institutional Animal Care and Use Committee, six healthy adult male beagles with prostates of at least 15 × 15 mm in size at the largest transverse section were chosen for the procedure. The probe portion of the robot was placed into the rectum of the dog, images were acquired and image-to-robot registration was performed. Images acquired after placement of the robot were reviewed and a radiologist selected targets for needle placement in the gland. Depending on the size of the prostate, up to a maximum of six needle placements were performed on each dog. After needle placement, robot-assisted core biopsies were performed on four dogs that had larger prostate volumes and extracted cores were analysed for potential diagnostic value. RESULTS: Robot-assisted MRI-guided needle placements were performed to target a total of 30 locations in six dogs, achieving a targeting accuracy of 2.58 mm (mean) and precision of 1.31 mm (SD). All needle placements were successfully completed on the first attempt. The mean time required to select a desired target location in the prostate, align the needle guide to that point, insert the needle and perform the biopsy was ∼ 3 min. For this targeting accuracy study, the inserted needle was also imaged after its placement in the prostate, which took an additional 6-8 min. Signal-to-noise ratio analysis indicated that the presence of the robot within the scanner bore had minimal impact on the quality of the images acquired. Analysis of intact biopsy core samples indicated that the samples contained prostatic tissues, appropriate for making a potential diagnosis. Dogs used in the study did not experience device- or procedure-related complications. CONCLUSIONS: Results from this preclinical pilot animal study suggest that MRI-targeted transrectal biopsies are feasible to perform and this procedure may be safely assisted by an MRI-safe robotic device.


Assuntos
Biópsia com Agulha de Grande Calibre , Imageamento por Ressonância Magnética , Próstata/patologia , Robótica/instrumentação , Experimentação Animal , Animais , Biópsia com Agulha de Grande Calibre/métodos , Cães , Desenho de Equipamento , Estudos de Viabilidade , Masculino , Reto , Segurança
20.
Curr Opin Urol ; 24(1): 75-80, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24257431

RESUMO

PURPOSE OF REVIEW: To present the recent advances in needle guidance and robotic ultrasound technology which are used for prostate cancer (PCa) diagnosis and management. RECENT FINDINGS: Prostate biopsy technology has remained relatively unchanged. Improved needle localization and precision would allow for better management of this common disease. Robotic ultrasound and needle guidance is one strategy to improve needle localization and diagnostic accuracy of PCa. This review focuses on the recent advances in robotic ultrasound and needle guidance technologies, and their potential impact on PCa diagnosis and management. SUMMARY: The use of robotic ultrasound and robotic-assisted needle guidance has the potential to improve PCa diagnosis and management.


Assuntos
Diagnóstico por Computador/métodos , Biópsia Guiada por Imagem/métodos , Neoplasias da Próstata/patologia , Neoplasias da Próstata/terapia , Radioterapia Assistida por Computador/métodos , Robótica , Cirurgia Assistida por Computador/métodos , Ultrassonografia de Intervenção , Biópsia por Agulha , Braquiterapia , Humanos , Laparoscopia , Masculino , Seleção de Pacientes , Valor Preditivo dos Testes , Prostatectomia , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA