Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Br J Cancer ; 118(1): 43-51, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29112683

RESUMO

BACKGROUND: Although altered membrane physiology has been discussed within the context of cancer, targeting membrane characteristics by drugs being an attractive therapeutic strategy has received little attention so far. METHODS: Various acetyl-CoA carboxylase 1 (ACC1), and fatty acid synthase (FASN) inhibitors (like Soraphen A and Cerulenin) as well as genetic knockdown approaches were employed to study the effects of disturbed phospholipid composition on membrane properties and its functional impact on cancer progression. By using state-of-the-art methodologies such as LC-MS/MS, optical tweezers measurements of giant plasma membrane vesicles and fluorescence recovery after photobleaching analysis, membrane characteristics were examined. Confocal laser scanning microscopy, proximity ligation assays, immunoblotting as well as migration, invasion and proliferation experiments unravelled the functional relevance of membrane properties in vitro and in vivo. RESULTS: By disturbing the deformability and lateral fluidity of cellular membranes, the dimerisation, localisation and recycling of cancer-relevant transmembrane receptors is compromised. Consequently, impaired activation of growth factor receptor signalling cascades results in abrogated tumour growth and metastasis in different in vitro and in vivo models. CONCLUSIONS: This study highlights the field of membrane properties as a promising druggable cellular target representing an innovative strategy for development of anti-cancer agents.


Assuntos
Acetil-CoA Carboxilase/genética , Inibidores Enzimáticos/administração & dosagem , Ácido Graxo Sintase Tipo I/genética , Lipogênese/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Acetil-CoA Carboxilase/antagonistas & inibidores , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células , Cerulenina/administração & dosagem , Cerulenina/farmacologia , Inibidores Enzimáticos/farmacologia , Ácido Graxo Sintase Tipo I/antagonistas & inibidores , Técnicas de Silenciamento de Genes , Humanos , Macrolídeos/administração & dosagem , Macrolídeos/farmacologia , Fluidez de Membrana/efeitos dos fármacos , Terapia de Alvo Molecular , Invasividade Neoplásica , Neoplasias/metabolismo , Fosfolipídeos/análise , Fotodegradação , Ensaios Antitumorais Modelo de Xenoenxerto
2.
Adv Healthc Mater ; 6(2)2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27863166

RESUMO

Metal-organic frameworks (MOFs) are promising platforms for the synthesis of nanoparticles for diverse medical applications. Their fundamental design principles allow for significant control of the framework architecture and pore chemistry, enabling directed functionalization for nanomedical applications. However, before applying novel nanomaterials to patients, it is imperative to understand their potential health risks. In this study, the nanosafety of different MOF nanoparticles is analyzed comprehensively for diverse medical applications. The authors first evaluate the effects of MOFs on human endothelial and mouse lung cells, which constitute a first line of defense upon systemic blood-mediated and local lung-specific applications of nanoparticles. Second, we validated these MOFs for multifunctional surface coatings of dental implants using human gingiva fibroblasts. Moreover, biocompatibility of MOFs is assessed for surface coating of nerve guidance tubes using human Schwann cells and rat dorsal root ganglion cultures. The main finding of this study is that the nanosafety and principal suitability of our MOF nanoparticles as novel agents for drug delivery and implant coatings strongly varies with the effector cell type. We conclude that it is therefore necessary to carefully evaluate the nanosafety of MOF nanomaterials with respect to their particular medical application and their interacting primary cell types, respectively.


Assuntos
Portadores de Fármacos/química , Células Endoteliais/metabolismo , Fibroblastos/metabolismo , Gengiva/metabolismo , Nanopartículas/química , Animais , Portadores de Fármacos/efeitos adversos , Células Endoteliais/citologia , Fibroblastos/citologia , Gengiva/citologia , Humanos , Camundongos , Nanopartículas/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA