Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
EBioMedicine ; 109: 105368, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39368455

RESUMO

BACKGROUND: Loss of heterozygosity (LOH) diminishes genetic diversity within cancer genomes. A tumour arising in an individual heterozygous for a functional and a loss-of-function (LoF) allele of a gene occasionally retain only the LoF allele. This can result in deficiency of specific protein activities in cancer cells, creating unique differences between tumour cells and normal cells of the individual. Such differences may constitute vulnerabilities that can be exploited through allele-specific therapies. METHODS: To discover frequently lost genes with prevalent LoF alleles, we mined the 1000 Genomes dataset for SNVs causing protein truncation through base substitution, indels or splice site disruptions, resulting in 60 LoF variants in 60 genes. From these, the variant rs3892097 in the liver enzyme CYP2D6 was selected because it is located within a genomic region that frequently undergoes LOH in several tumor types including hepatocellular cancers. To evaluate the relationship between CYP2D6 activity and the toxicities of anticancer agents, we screened 525 compounds currently in clinical use or undergoing clinical trials using cell model systems with or without CYP2D6 activity. FINDINGS: We identified 12 compounds, AZD-3463, CYC-116, etoposide, everolimus, GDC-0349, lenvatinib, MK-8776, PHA-680632, talazoparib, tyrphostin 9, VX-702, and WZ-3146, using an engineered HEK293T cell model. Of these, talazoparib and MK-8776 demonstrated consistently heightened cytotoxic effects against cells with compromised CYP2D6 activity in engineered hepatocellular cancer cell models. Moreover, talazoparib displayed CYP2D6 genotype dependent effects on primary hepatocellular carcinoma organoids. INTERPRETATION: Exploiting the loss of drug-metabolizing enzyme gene activity in tumor cells following loss of heterozygosity could present a promising therapeutic strategy for targeted cancer treatment. FUNDING: This work was funded by Barncancerfonden (T.S, PR2022-0099 and PR2020-0171, X.Z, TJ2021-0111), Cancerfonden (T.S, 211719Pj and D.G, 222449Pj), Vetenskapsrådet (T.S, 2020-02371 and D.G, 2020-04707), and the Erling Persson Foundation (T.S, 2020-0037 and T.S, 2023-0113).

2.
Cell Commun Signal ; 21(1): 354, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102712

RESUMO

BACKGROUND: Ephrin (EPH) receptors have been implicated in tumorigenesis and metastasis, but the functional understanding of mutations observed in human cancers is limited. We previously demonstrated reduced cell compartmentalisation for somatic EPHB1 mutations found in metastatic colorectal cancer cases. We therefore integrated pan-cancer and pan-EPH mutational data to prioritise recurrent EPHB1 mutations for functional studies to understand their contribution to cancer development and metastasis. METHODS: Here, 79,151 somatic mutations in 9,898 samples of 33 different tumour types were analysed with a bioinformatic pipeline to find 3D-mutated cluster pairs and hotspot mutations in EPH receptors. From these, 15 recurring EPHB1 mutations were stably expressed in colorectal cancer followed by confocal microscopy based in vitro compartmentalisation assays and phospho-proteome analysis. RESULTS: The 3D-protein structure-based bioinformatics analysis resulted in 63% EPHB1 mutants with compartmentalisation phenotypes vs 43% for hotspot mutations. Whereas the ligand-binding domain mutations C61Y, R90C, and R170W, the fibronectin domain mutation R351L, and the kinase domain mutation D762N displayed reduced to strongly compromised cell compartmentalisation, the kinase domain mutations R743W and G821R enhanced this phenotype. While mutants with reduced compartmentalisation also had reduced ligand induced receptor phosphorylation, the enhanced compartmentalisation was not linked to receptor phosphorylation level. Phosphoproteome mapping pinpointed the PI3K pathway and PIK3C2B phosphorylation in cells harbouring mutants with reduced compartmentalisation. CONCLUSIONS: This is the first integrative study of pan-cancer EPH receptor mutations followed by in vitro validation, a robust way to identify cancer-causing mutations, uncovering EPHB1 mutation phenotypes and demonstrating the utility of protein structure-based mutation analysis in characterization of novel cancer genes. Video Abstract.


Assuntos
Neoplasias Colorretais , Fosfatidilinositol 3-Quinases , Humanos , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Ligantes , Mutação , Recidiva Local de Neoplasia , Receptores Proteína Tirosina Quinases/metabolismo
3.
Biochem Pharmacol ; 203: 115184, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35872325

RESUMO

Loss of heterozygosity (LOH) is a hallmark feature of cancer genomes that reduces allelic variation, thereby creating tumor specific vulnerabilities which could be exploited for therapeutic purposes. We previously reported that loss of drug metabolic arylamine N-acetyltransferase 2 (NAT2) activity following LOH at 8p22 could be targeted for collateral lethality anticancer therapy in colorectal cancer (CRC). Here, we report a novel compound CBK034026C that exhibits specific toxicity towards CRC cells with high NAT2 activity. Connectivity Map analysis revealed that CBK034026C elicited a response pattern related to ATPase inhibitors. Similar to ouabain, a potent inhibitor of the Na+/K+-ATPase, CBK034026C activated the Nf-kB pathway. Further metabolomic profiling revealed downregulation of pathways associated with antioxidant defense and mitochondrial metabolism in CRC cells with high NAT2 activity, thereby weakening the protective response to oxidative stress induced by CBK034026C. The identification of a small molecule targeting metabolic vulnerabilities caused by NAT2 activity provides novel avenues for development of anticancer agents.


Assuntos
Antineoplásicos , Arilamina N-Acetiltransferase , Neoplasias Colorretais , Acetiltransferases/genética , Adenosina Trifosfatases , Alelos , Antineoplásicos/farmacologia , Arilamina N-Acetiltransferase/genética , Arilamina N-Acetiltransferase/metabolismo , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Humanos
4.
Mol Cell Oncol ; 7(4): 1759390, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32944621

RESUMO

We show that N-acetyltransferase 2 (NAT2) loss of heterozygosity can be targeted in >4% of colorectal cancers with the use of a small molecule. We identify and describe the effect of a compound that impairs the growth of colorectal tumors with slow NAT2 activity by half when compared to wild-type.

5.
Nat Commun ; 11(1): 1308, 2020 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-32161261

RESUMO

Cancer chemotherapy targeting frequent loss of heterozygosity events is an attractive concept, since tumor cells may lack enzymatic activities present in normal constitutional cells. To find exploitable targets, we map prevalent genetic polymorphisms to protein structures and identify 45 nsSNVs (non-synonymous small nucleotide variations) near the catalytic sites of 17 enzymes frequently lost in cancer. For proof of concept, we select the gastrointestinal drug metabolic enzyme NAT2 at 8p22, which is frequently lost in colorectal cancers and has a common variant with 10-fold reduced activity. Small molecule screening results in a cytotoxic kinase inhibitor that impairs growth of cells with slow NAT2 and decreases the growth of tumors with slow NAT2 by half as compared to those with wild-type NAT2. Most of the patient-derived CRC cells expressing slow NAT2 also show sensitivity to 6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine (APA) treatment. These findings indicate that the therapeutic index of anti-cancer drugs can be altered by bystander mutations affecting drug metabolic genes.


Assuntos
Antineoplásicos/farmacologia , Arilamina N-Acetiltransferase/genética , Neoplasias Colorretais/tratamento farmacológico , Perda de Heterozigosidade , Inibidores de Proteínas Quinases/farmacologia , Alelos , Animais , Antineoplásicos/uso terapêutico , Arilamina N-Acetiltransferase/metabolismo , Efeito Espectador/genética , Estudos de Casos e Controles , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Relação Dose-Resposta a Droga , Feminino , Células HCT116 , Humanos , Isoenzimas/metabolismo , Camundongos , Camundongos Nus , Polimorfismo Genético , Inibidores de Proteínas Quinases/uso terapêutico , Bibliotecas de Moléculas Pequenas , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Sci Rep ; 10(1): 22436, 2020 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-33384440

RESUMO

Therapies targeting somatic bystander genetic events represent a new avenue for cancer treatment. We recently identified a subset of colorectal cancer (CRC) patients who are heterozygous for a wild-type and a low activity allele (NAT2*6) but lack the wild-type allele in their tumors due to loss of heterozygosity (LOH) at 8p22. These tumors were sensitive to treatment with a cytotoxic substrate of NAT2 (6-(4-aminophenyl)-N-(3,4,5-trimethoxyphenyl)pyrazin-2-amine, APA), and pointed to NAT2 loss being a therapeutically exploitable vulnerability of CRC tumors. To better estimate the total number of treatable CRC patients, we here determined whether tumor cells retaining also other NAT2 low activity variants after LOH respond to APA treatment. The prevalent low activity alleles NAT2*5 and NAT2*14, but not NAT2*7, were found to be low metabolizers with high sensitivity to APA. By analysis of two different CRC patient cohorts, we detected heterozygosity for NAT2 alleles targetable by APA, along with allelic imbalances pointing to LOH, in ~ 24% of tumors. Finally, to haplotype the NAT2 locus in tumor and patient-matched normal samples in a clinical setting, we develop and demonstrate a long-read sequencing based assay. In total, > 79.000 CRC patients per year fulfil genetic criteria for high sensitivity to a NAT2 LOH therapy and their eligibility can be assessed by clinical sequencing.


Assuntos
Alelos , Antineoplásicos/uso terapêutico , Arilamina N-Acetiltransferase/antagonistas & inibidores , Arilamina N-Acetiltransferase/genética , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/genética , Inibidores Enzimáticos/uso terapêutico , Terapia de Alvo Molecular , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Inibidores Enzimáticos/farmacologia , Frequência do Gene , Haplótipos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Fenótipo , Imagem Individual de Molécula
7.
Oncotarget ; 8(58): 98646-98659, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29228717

RESUMO

The chromatin modifier PRDM2/RIZ1 is inactivated by mutation in several forms of cancer and is a putative tumor suppressor gene. Frameshift mutations in the C-terminal region of PRDM2, affecting (A)8 or (A)9 repeats within exon 8, are found in one third of colorectal cancers with microsatellite instability, but the contribution of these mutations to colorectal tumorigenesis is unknown. To model somatic mutations in microsatellite unstable tumors, we devised a general approach to perform genome editing while stabilizing the mutated nucleotide repeat. We then engineered isogenic cell systems where the PRDM2 c.4467delA mutation in human HCT116 colorectal cancer cells was corrected to wild-type by genome editing. Restored PRDM2 increased global histone 3 lysine 9 dimethylation and reduced migration, anchorage-independent growth and tumor growth in vivo. Gene set enrichment analysis revealed regulation of several hallmark cancer pathways, particularly of epithelial-to-mesenchymal transition (EMT), with VIM being the most significantly regulated gene. These observations provide direct evidence that PRDM2 c.4467delA is a driver mutation in colorectal cancer and confirms PRDM2 as a cancer gene, pointing to regulation of EMT as a central aspect of its tumor suppressive action.

8.
Nucleic Acids Res ; 43(5): e30, 2015 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-25488813

RESUMO

The rapid discovery of potential driver mutations through large-scale mutational analyses of human cancers generates a need to characterize their cellular phenotypes. Among the techniques for genome editing, recombinant adeno-associated virus (rAAV)-mediated gene targeting is suited for knock-in of single nucleotide substitutions and to a lesser degree for gene knock-outs. However, the generation of gene targeting constructs and the targeting process is time-consuming and labor-intense. To facilitate rAAV-mediated gene targeting, we developed the first software and complementary automation-friendly vector tools to generate optimized targeting constructs for editing human protein encoding genes. By computational approaches, rAAV constructs for editing ~71% of bases in protein-coding exons were designed. Similarly, ~81% of genes were predicted to be targetable by rAAV-mediated knock-out. A Gateway-based cloning system for facile generation of rAAV constructs suitable for robotic automation was developed and used in successful generation of targeting constructs. Together, these tools enable automated rAAV targeting construct design, generation as well as enrichment and expansion of targeted cells with desired integrations.


Assuntos
Dependovirus/genética , Marcação de Genes/métodos , Vetores Genéticos/genética , Genoma Humano/genética , Simulação por Computador , Bases de Dados Genéticas , Regulação da Expressão Gênica , Técnicas de Introdução de Genes , Técnicas de Inativação de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Células HCT116 , Humanos , Recombinação Genética/genética , Transfecção/métodos
9.
Nucleic Acids Res ; 40(17): 8440-8, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-22753029

RESUMO

Ultraviolet (UV)-induced DNA damage causes an efficient block of elongating replication forks. The checkpoint kinase, CHK1 has been shown to stabilize replication forks following hydroxyurea treatment. Therefore, we wanted to test if the increased UV sensitivity caused by the unspecific kinase inhibitor caffeine--inhibiting ATM and ATR amongst other kinases--is explained by inability to activate the CHK1 kinase to stabilize replicative structures. For this, we used cells deficient in polymerase η (Polη), a translesion synthesis polymerase capable of properly bypassing the UV-induced cis-syn TT pyrimidine dimer, which blocks replication. These cells accumulate gaps behind progressing replication forks after UV exposure. We demonstrate that both caffeine and CHK1 inhibition, equally retards continuous replication fork elongation after UV treatment. Interestingly, we found more pronounced UV-sensitization by caffeine than with the CHK1 inhibitor in clonogenic survival experiments. Furthermore, we demonstrate an increased collapse of replicative structures after caffeine treatment, but not after CHK1 inhibition, in UV-irradiated cells. This demonstrates that CHK1 activity is not required for stabilization of gaps induced during replication of UV-damaged DNA. These data suggest that elongation and stabilization of replicative structures at UV-induced DNA damage are distinct mechanisms, and that CHK1 is only involved in replication elongation.


Assuntos
Dano ao DNA , Replicação do DNA , Proteínas Quinases/metabolismo , Raios Ultravioleta , Cafeína/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Transformada , Sobrevivência Celular , Quinase 1 do Ponto de Checagem , Quebras de DNA de Cadeia Dupla , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , DNA Polimerase Dirigida por DNA/deficiência , Humanos , Inibidores de Proteínas Quinases/farmacologia , Transdução de Sinais/efeitos da radiação
10.
BMC Res Notes ; 5: 87, 2012 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-22309575

RESUMO

BACKGROUND: The proliferating cell nuclear antigen (PCNA) is a key protein in the eukaryotic DNA replication and cell proliferation. Following the cloning and characterisation of the human PCNA gene, the question of the existence of pseudogenes in the human genome was raised. FINDINGS: In this short communication we summarise the existing information about the PCNA pseudogenes and critically assess their status. CONCLUSIONS: We propose the existence of at least four valid PCNA pseudogenes, PCNAP1, PCNAP2, LOC392454 and LOC390102. We would like to recommend assignment of a name for LOC392454 as "proliferating cell nuclear antigen pseudogene 3" (alias PCNAP3) and a name for LOC390102 as "proliferating cell nuclear antigen pseudogene 4" (alias PCNAP4). We prompt for more critical evaluation of the existence of a PCNA pseudogene, designated as PCNAP.

11.
PLoS One ; 6(5): e19492, 2011 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-21573160

RESUMO

Homologous recombination (HR) is intricately associated with replication, transcription and DNA repair in all organisms studied. However, the interplay between all these processes occurring simultaneously on the same DNA molecule is still poorly understood. Here, we study the interplay between transcription and HR during ultraviolet light (UV)-induced DNA damage in mammalian cells. Our results show that inhibition of transcription with 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB) increases the number of UV-induced DNA lesions (γH2AX, 53BP1 foci formation), which correlates with a decrease in the survival of wild type or nucleotide excision repair defective cells. Furthermore, we observe an increase in RAD51 foci formation, suggesting HR is triggered in response to an increase in UV-induced DSBs, while inhibiting transcription. Unexpectedly, we observe that DRB fails to sensitise HR defective cells to UV treatment. Thus, increased RAD51 foci formation correlates with increased cell death, suggesting the existence of a futile HR repair of UV-induced DSBs which is linked to transcription inhibition.


Assuntos
Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Diclororribofuranosilbenzimidazol/farmacologia , Recombinação Genética/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Raios Ultravioleta/efeitos adversos , Animais , Linhagem Celular , Cricetinae , Cricetulus , Reparo do DNA/genética , Citometria de Fluxo , Imunofluorescência , Recombinação Genética/genética , Transcrição Gênica/genética
12.
Mutat Res ; 706(1-2): 1-6, 2011 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-21074544

RESUMO

Transcription, replication and homologous recombination are intrinsically connected and it is well established that an increase of transcription is associated with an increase in homologous recombination. Here, we have studied how homologous recombination is affected during transcription inhibition by 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole (DRB), a compound that prevents activating phosphorylations of the RNA Pol II C-terminal domain. We identify that DRB triggers an increase in homologous recombination within the hprt gene as well as increasing RAD51 foci formation in mammalian cells. Furthermore, we find that DRB-induced transcriptional stress is associated with formation of the nuclear foci of the phosphorylated form of H2AX (γH2AX). We accounted that about 72% of RAD51 foci co-localized with the observed γH2AX foci. Interestingly, we find that XRCC3 mutated, homologous recombination defective cells are hypersensitive to the toxic effect of DRB and fail to form RAD51 foci. In conclusion, we show that DRB-induced transcription inhibition is associated with the formation of a lesion that triggers RAD51-dependent homologous recombination repair, required for survival under transcriptional stress.


Assuntos
Dano ao DNA , Reparo do DNA/efeitos dos fármacos , Diclororribofuranosilbenzimidazol/farmacologia , Recombinação Genética/efeitos dos fármacos , Animais , Células CHO , Cricetinae , Cricetulus , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Inibidores Enzimáticos/farmacologia , Histonas/metabolismo , Hipoxantina Fosforribosiltransferase/genética , Microscopia Confocal , Mutação , Fosforilação/efeitos dos fármacos , Rad51 Recombinase/metabolismo , Transcrição Gênica/efeitos dos fármacos
13.
Cancer Res ; 70(15): 6268-76, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20631063

RESUMO

Familial breast and ovarian cancers are often defective in homologous recombination (HR) due to mutations in the BRCA1 or BRCA2 genes. Cisplatin chemotherapy or poly(ADP-ribose) polymerase (PARP) inhibitors were tested for these tumors in clinical trials. In a screen for novel drugs that selectively kill BRCA2-defective cells, we identified 6-thioguanine (6TG), which induces DNA double-strand breaks (DSB) that are repaired by HR. Furthermore, we show that 6TG is as efficient as a PARP inhibitor in selectively killing BRCA2-defective tumors in a xenograft model. Spontaneous BRCA1-defective mammary tumors gain resistance to PARP inhibitors through increased P-glycoprotein expression. Here, we show that 6TG efficiently kills such BRCA1-defective PARP inhibitor-resistant tumors. We also show that 6TG could kill cells and tumors that have gained resistance to PARP inhibitors or cisplatin through genetic reversion of the BRCA2 gene. Although HR is reactivated in PARP inhibitor-resistant BRCA2-defective cells, it is not fully restored for the repair of 6TG-induced lesions. This is likely to be due to several recombinogenic lesions being formed after 6TG. We show that BRCA2 is also required for survival from mismatch repair-independent lesions formed by 6TG, which do not include DSBs. This suggests that HR is involved in the repair of 6TG-induced DSBs as well as mismatch repair-independent 6TG-induced DNA lesion. Altogether, our data show that 6TG efficiently kills BRCA2-defective tumors and suggest that 6TG may be effective in the treatment of advanced tumors that have developed resistance to PARP inhibitors or platinum-based chemotherapy.


Assuntos
Proteína BRCA2/deficiência , Neoplasias do Colo/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Mamárias Experimentais/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases , Tioguanina/farmacologia , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/biossíntese , Animais , Antimetabólitos Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose , Proteína BRCA2/genética , Proteína BRCA2/metabolismo , Pareamento Incorreto de Bases , Neoplasias do Colo/enzimologia , Neoplasias do Colo/genética , Reparo do DNA , Sinergismo Farmacológico , Genes BRCA2 , Células HCT116 , Humanos , Neoplasias Mamárias Experimentais/enzimologia , Neoplasias Mamárias Experimentais/genética , Camundongos
14.
Biochem Soc Trans ; 37(Pt 3): 605-13, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19442257

RESUMO

Cancer is caused by genetic changes that often arise following failure to accurately replicate the DNA. PCNA (proliferating-cell nuclear antigen) forms a ring around the DNA to facilitate and control DNA replication. Emerging evidence suggests that PCNA is at the very heart of many essential cellular processes, such as DNA replication, repair of DNA damage, chromatin structure maintenance, chromosome segregation and cell-cycle progression. Progression of the DNA replication forks can be blocked by DNA lesions, formed either by endogenous damage or by exogenous agents, for instance anticancer drugs. Cellular response often results in change of PCNA function triggered either by specific post-translational modification of PCNA (i.e. ubiquitylation) or by exchange of its interaction partners. This puts PCNA in a central position in determining the fate of the replication fork. In the present article, we review PCNA modifications and interaction partners, and how those influence the course of events at replication forks, which ultimately determines both tumour progression as well as the outcome of anticancer treatment.


Assuntos
Neoplasias/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Ciclo Celular/fisiologia , Proteínas de Ciclo Celular/metabolismo , Cromatina/metabolismo , Dano ao DNA , Reparo do DNA/fisiologia , Replicação do DNA/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Neoplasias/patologia , Antígeno Nuclear de Célula em Proliferação/química , Antígeno Nuclear de Célula em Proliferação/genética , Ligação Proteica , Conformação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos
15.
J Cell Biochem ; 96(1): 126-36, 2005 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-16052506

RESUMO

Host cell reactivation assay using Trioxsalen-crosslinked plasmid pEGFP-N1 showed that human cells were able to repair Trioxsalen interstrand crosslinks (ICL). To study the mechanism of this repair pathway, cells were transfected with the plasmids pEGFP-1, which did not contain the promoter of the egfp gene, and with pEGFP-G-, which did not contain the egfp gene. Neither of these plasmids alone was able to express the green fluorescent protein. After cotransfection with the two plasmids, 1%-2% of the cells developed fluorescent signal, which showed that recombination events had taken place in these cells to create DNA constructs containing the promoter and the gene properly aligned. When one or both of the plasmids were crosslinked with Trioxsalen, the recombination rate increased several fold. To identify the nuclear compartment where recombination takes place, cells were transfected with crosslinked pEGFP-N1 and the amount of plasmid DNA in the different nuclear fractions was determined. The results showed that Trioxsalen crosslinking increased the percentage of matrix attached plasmid DNA in a dose-dependent way. Immunoblotting experiments showed that after transfection with Trioxsalen crosslinked plasmids the homologous recombination protein Rad51 also associated with the nuclear matrix fraction. These studies provide a model system for investigating the precise molecular mechanisms that appear to couple repair of DNA ICL with nuclear matrix attachment.


Assuntos
Reparo do DNA/fisiologia , DNA/metabolismo , Matriz Nuclear/fisiologia , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cricetinae , DNA/efeitos dos fármacos , Genes Reporter , Humanos , Matriz Nuclear/enzimologia , Plasmídeos , Transfecção , Trioxsaleno/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA