Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
J Clin Oncol ; : JCO2302110, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38648575

RESUMO

PURPOSE: The phase III RESILIENT trial compared second-line liposomal irinotecan with topotecan in patients with small cell lung cancer (SCLC). PATIENTS AND METHODS: Patients with SCLC and progression on or after first-line platinum-based chemotherapy were randomly assigned (1:1) to intravenous (IV) liposomal irinotecan (70 mg/m2 every 2 weeks in a 6-week cycle) or IV topotecan (1.5 mg/m2 daily for 5 consecutive days, every 3 weeks in a 6-week cycle). The primary end point was overall survival (OS). Key secondary end points included progression-free survival (PFS) and objective response rate (ORR). RESULTS: Among 461 randomly assigned patients, 229 received liposomal irinotecan and 232 received topotecan. The median follow-up was 18.4 months. The median OS was 7.9 months with liposomal irinotecan versus 8.3 months with topotecan (hazard ratio [HR], 1.11 [95% CI, 0.90 to 1.37]; P = .31). The median PFS per blinded independent central review (BICR) was 4.0 months with liposomal irinotecan and 3.3 months with topotecan (HR, 0.96 [95% CI, 0.77 to 1.20]; nominal P = .71); ORR per BICR was 44.1% (95% CI, 37.6 to 50.8) and 21.6% (16.4 to 27.4), respectively. Overall, 42.0% and 83.4% of patients receiving liposomal irinotecan and topotecan, respectively, experienced grade ≥3 related treatment-emergent adverse events (TEAEs). The most common grade ≥3 related TEAEs were diarrhea (13.7%), neutropenia (8.0%), and decreased neutrophil count (4.4%) with liposomal irinotecan and neutropenia (51.6%), anemia (30.9%), and leukopenia (29.1%) with topotecan. CONCLUSION: Liposomal irinotecan and topotecan demonstrated similar median OS and PFS in patients with relapsed SCLC. Although the primary end point of OS was not met, liposomal irinotecan demonstrated a higher ORR than topotecan. The safety profile of liposomal irinotecan was consistent with its known safety profile; no new safety concerns emerged.

2.
ACS Omega ; 9(9): 10539-10555, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38463280

RESUMO

Covarine, copper phthalocyanine, a novel tooth whitening ingredient, has been incorporated into various toothpaste formulations using diverse technologies such as larger flakes, two-phase pastes, and microbeads. In this study, we investigated the behavior of covarine microbeads (200 µm) in Colgate advanced white toothpaste when mixed with artificial and real saliva. Our analysis utilized a custom-designed microfluidic mixer with 400 µm wide channels arranged in serpentine patterns, featuring a Y-shaped design for saliva and toothpaste flow. The mixer, fabricated using stereolithography 3D printing technology, incorporated a flexible transparent resin (Formlabs' Flexible 80A resin) and PMMA layers. COMSOL simulations were performed by utilizing parameters extracted from toothpaste and saliva datasheets, supplemented by laboratory measurements, to enhance simulation accuracy. Experimental assessments encompassing the behavior of covarine particles were conducted using an optical profilometer. Viscosity tests and electrical impedance spectroscopy employing recently developed all-carbon electrodes were employed to analyze different toothpaste dilutions. The integration of experimental data from microfluidic chips with computational simulations offers thorough insights into the interactions of covarine particles with saliva and the formation of microfilms on enamel surfaces.

3.
ACS Omega ; 9(6): 6527-6536, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38371763

RESUMO

Tissue engineering is currently one of the fastest-growing areas of engineering, requiring the fabrication of advanced and multifunctional materials that can be used as scaffolds or dressings for tissue regeneration. In this work, we report a bilayer material prepared by electrospinning a hybrid material of poly(vinyl alcohol) (PVA) and bacterial cellulose (BC NFs) (top layer) over a highly interconnected porous 3D gelatin-PVA hydrogel obtained by a freeze-drying process (bottom layer). The techniques were combined to produce an advanced material with synergistic effects on the physical and biological properties of the two materials. The bilayer material was characterized using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a water contact measurement system (WCMS). Studies on swelling, degradability, porosity, drug release, cellular and antibacterial activities were performed using standardized procedures and assays. FTIR confirmed cross-linking of both the top and bottom layers, and SEM showed porous structure for the bottom layer, random deposition of NFs on the surface, and aligned NFs in the cross section. The water contact angle (WCA) showed a hydrophilic surface for the bilayer material. Swelling analysis showed high swelling, and degradation analysis showed good stability. The bilayer material released Ag-sulfadiazine in a sustained and controlled manner and showed good antibacterial activities against severe disease-causing gram + ive and -ive (Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa) bacterial strains. In vitro biological studies were performed on fibroblasts (3T3) and human embryonic kidneys (HEK-293), which showed desirable cell viability, proliferation, and adhesion to the bilayer. Thus, the synergistic effect of NFs and the hydrogel resulted in a potential wound dressing material for wound healing and soft tissue engineering.

4.
Heliyon ; 10(4): e26069, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38420460

RESUMO

This work presents a novel approach towards integrating electronic components with textiles, by successfully creating a fully textile-based element that is capable of detecting applied forces by variation in its resistance value. The fabrication of the device consists of a specialized siliconized conductive fabric, which is placed above and below a layer of switch fabric, which acts as a force sensor. In this paper, the effects of three different geometries are observed, as well as the washability of the device, along with tension testing. Μoreover, the device behavior is simulated as well as applied in a real-life scenario. The proposed element demonstrates a good dynamic range, high repeatability and stability, and minimal impact of washing, creating a great candidate for integration in e-textiles.

5.
Int J Biol Macromol ; 254(Pt 3): 127882, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37951446

RESUMO

Tissue engineering is an advanced and potential biomedical approach to treat patients suffering from lost or failed an organ or tissue to repair and regenerate damaged tissues that increase life expectancy. The biopolymers have been used to fabricate smart hydrogels to repair damaged tissue as they imitate the extracellular matrix (ECM) with intricate structural and functional characteristics. These hydrogels offer desired and controllable qualities, such as tunable mechanical stiffness and strength, inherent adaptability and biocompatibility, swellability, and biodegradability, all crucial for tissue engineering. Smart hydrogels provide a superior cellular environment for tissue engineering, enabling the generation of cutting-edge synthetic tissues due to their special qualities, such as stimuli sensitivity and reactivity. Numerous review articles have presented the exceptional potential of hydrogels for various biomedical applications, including drug delivery, regenerative medicine, and tissue engineering. Still, it is essential to write a comprehensive review article on smart hydrogels that successfully addresses the essential challenging issues in tissue engineering. Hence, the recent development on smart hydrogel for state-of-the-art tissue engineering conferred progress, highlighting significant challenges and future perspectives. This review discusses recent advances in smart hydrogels fabricated from biological macromolecules and their use for advanced tissue engineering. It also provides critical insight, emphasizing future research directions and progress in tissue engineering.


Assuntos
Hidrogéis , Engenharia Tecidual , Humanos , Hidrogéis/química , Medicina Regenerativa , Matriz Extracelular/química , Sistemas de Liberação de Medicamentos
6.
Sci Rep ; 13(1): 21277, 2023 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042878

RESUMO

Intraoral theranostics, the integration of diagnostics and therapeutics within the oral cavity, is gaining significant traction. This pioneering approach primarily addresses issues like xerostomia (dry mouth), commonly resulting from cancer treatment, with a specific focus on monitoring temperature and humidity. This paper introduces the innovative Intra-Oral Portable Micro-Electronic (IOPM) fluidic theranostic device platform. It leverages conventional dental spoons by incorporating advanced sensors for precise measurements of oral temperature and humidity. Personalization options include a microfluidic chip and a tooth model, enabling targeted delivery of therapeutic agents to optimize treatment outcomes. The electronic control system simplifies the administration of fluid dosages, intelligently adjusted based on real-time oral cavity temperature and humidity readings. Rigorous experimental evaluations validate the platform's precision in delivering fluid volumes at predefined intervals. This platform represents a transformative advancement for individuals contending with oral health challenges such as xerostomia (dry mouth). Furthermore, it has the potential to elevate oral healthcare standards by providing advanced diagnostics and tailored therapeutic solutions, benefiting both patients and dental professionals alike.


Assuntos
Xerostomia , Humanos , Temperatura , Umidade , Xerostomia/diagnóstico , Xerostomia/terapia , Exame Físico
7.
Front Public Health ; 11: 1279915, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37927882

RESUMO

This systematic review and meta-analysis aimed to evaluate the ingestion of toothpaste and its sequelae. The study adhered to the PRISMA guidelines and was registered in the PROSPERO database. A comprehensive search strategy was conducted across multiple databases, resulting in the inclusion of 18 relevant publications. Eligible studies encompassed various designs and included both children and adults as the study population. Data extraction was carried out systematically, and relevant information on study characteristics, interventions, and outcomes were collected. The assessment of bias was performed using the Joanna Briggs Institute's Critical Appraisal Tools showing variations of bias among the included studies. The overall risk of systemic toxicity was found to be low, and no severe or life-threatening events were reported in the included studies. Furthermore, some toothpaste formulations containing higher concentrations of fluoride were associated with an increased risk of dental fluorosis. These findings have several implications for practice and policy. Healthcare providers and dental professionals should emphasize the importance of promoting safe toothpaste use, especially in vulnerable populations such as young children who are more prone to accidental ingestion. Public health campaigns and educational initiatives should aim to raise awareness about appropriate toothpaste usage and the potential risks. In addition, toothpaste manufacturers and regulatory bodies should consider revising guidelines and regulations to ensure the safety of oral care products, including the appropriate concentration of active ingredients. Future research should focus on investigating the long-term effects of toothpaste ingestion, exploring potential interactions between different active ingredients, and evaluating the efficacy of current preventive measures.


Assuntos
Fluoretos , Cremes Dentais , Criança , Adulto , Humanos , Pré-Escolar , Cremes Dentais/efeitos adversos , Fluoretos/efeitos adversos , Promoção da Saúde , Pessoal de Saúde , Ingestão de Alimentos
8.
ACS Omega ; 8(43): 40024-40035, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37929099

RESUMO

Biopolymer-based bioactive hydrogels are excellent wound dressing materials for wound healing applications. They have excellent properties, including hydrophilicity, tunable mechanical and morphological properties, controllable functionality, biodegradability, and desirable biocompatibility. The bioactive hydrogels were fabricated from bacterial cellulose (BC), gelatin, and graphene oxide (GO). The GO-functionalized-BC (GO-f-BC) was synthesized by a hydrothermal method and chemically crosslinked with bacterial cellulose and gelatin using tetraethyl orthosilicate (TEOS) as a crosslinker. The structural, morphological, and wettability properties were studied using Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and a universal testing machine (UTM), respectively. The swelling analysis was conducted in different media, and aqueous medium exhibited maximum hydrogel swelling compared to other media. The Franz diffusion method was used to study curcumin (Cur) release (Max = 69.32%, Min = 49.32%), and Cur release kinetics followed the Hixson-Crowell model. Fibroblast (3T3) cell lines were employed to determine the cell viability and proliferation to bioactive hydrogels. Antibacterial activities of bioactive hydrogels were evaluated against infection-causing bacterial strains. Bioactive hydrogels are hemocompatible due to their less than 0.5% hemolysis against fresh human blood. The results show that bioactive hydrogels can be potential wound dressing materials for wound healing applications.

9.
ACS Omega ; 8(18): 15909-15919, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37179612

RESUMO

Biopolymer-based hydrogels have several advantages, including robust mechanical tunability, high biocompatibility, and excellent optical properties. These hydrogels can be ideal wound dressing materials and advantageous to repair and regenerate skin wounds. In this work, we prepared composite hydrogels by blending gelatin and graphene oxide-functionalized bacterial cellulose (GO-f-BC) with tetraethyl orthosilicate (TEOS). The hydrogels were characterized using Fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), atomic force microscope (AFM), and water contact angle analyses to explore functional groups and their interactions, surface morphology, and wetting behavior, respectively. The swelling, biodegradation, and water retention were tested to respond to the biofluid. Maximum swelling was exhibited by GBG-1 (0.01 mg GO amount) in all media (aqueous = 1902.83%, PBS = 1546.63%, and electrolyte = 1367.32%). All hydrogels were hemocompatible, as their hemolysis was less than 0.5%, and blood coagulation time decreased as the hydrogel concentration and GO amount increased under in vitro standard conditions. These hydrogels exhibited unusual antimicrobial activities against Gram-positive and Gram-negative bacterial strains. The cell viability and proliferation were increased with an increased GO amount, and maximum values were found for GBG-4 (0.04 mg GO amount) against fibroblast (3T3) cell lines. The mature and well-adhered cell morphology of 3T3 cells was found for all hydrogel samples. Based on all findings, these hydrogels would be a potential wound dressing skin material for wound healing applications.

10.
Chem Commun (Camb) ; 59(29): 4300-4303, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36928485

RESUMO

This communication describes the development of polyvinyl chloride electrochemical system in which a paper layer loaded with reagents is inserted into the device, demonstrating a new concept of a paper card-like pad for a reagent-free and easy measurement of the target analyte in solution. This device detects glucose in artificial tears in the range of 0.2-2 mM with a detection limit of 50 µM by simply adding the artificial tears to the paper card-like pad. The novel configuration goes beyond the state of the art, widening the application range of paper in the design of smart analytical devices.


Assuntos
Lubrificantes Oftálmicos , Sistemas Automatizados de Assistência Junto ao Leito , Técnicas Eletroquímicas , Glucose , Indicadores e Reagentes , Papel , Cloreto de Polivinila/química
11.
Sci Rep ; 13(1): 5070, 2023 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-36977800

RESUMO

A novel method for embedded hardware-based parameter estimation of the Cole model of bioimpedance is developed and presented. The model parameters R∞, R1 and C are estimated using the derived set of equations based on measured values of real (R) and imaginary part (X) of bioimpedance, as well as the numerical approximation of the first derivative of quotient R/X with respect to angular frequency. The optimal value for parameter α is estimated using a brute force method. The estimation accuracy of the proposed method is very similar with the relevant work from the existing literature. Moreover, performance evaluation was performed using the MATLAB software installed on a laptop, as well as on the three embedded-hardware platforms (Arduino Mega2560, Raspberry Pi Pico and XIAO SAMD21). Obtained results showed that the used platforms can perform reliable bioimpedance processing with the same accuracy, while Raspberry Pi Pico is the fastest solution with the smallest energy consumption.

12.
PLoS One ; 18(2): e0280381, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36795661

RESUMO

Diagnosing oral diseases at an early stage may lead to better preventive treatments, thus reducing treatment burden and costs. This paper introduces a systematic design of a microfluidic compact disc (CD) consisting of six unique chambers that run simultaneously from sample loading, holding, mixing and analysis. In this study, the electrochemical property changes between real saliva and artificial saliva mixed with three different types of mouthwashes (i.e. chlorhexidine-, fluoride- and essential oil (Listerine)-based mouthwashes) were investigated using electrical impedance analysis. Given the diversity and complexity of patient's salivary samples, we investigated the electrochemical impedance property of healthy real saliva mixed with different types of mouthwashes to understand the different electrochemical property which could be a foundation for diagnosis and monitoring of oral diseases. On the other hand, electrochemical impedance property of artificial saliva, a commonly used moisturizing agent and lubricant for the treatment of xerostomia or dry mouth syndrome was also studied. The findings indicate that artificial saliva and fluoride-based mouthwash showed higher conductance values compared to real saliva and two other different types of mouthwashes. The ability of our new microfluidic CD platform to perform multiplex processes and detection of electrochemical property of different types of saliva and mouthwashes is a fundamental concept for future research on salivary theranostics using point-of-care microfluidic CD platform.


Assuntos
Antissépticos Bucais , Xerostomia , Humanos , Saliva Artificial/química , Impedância Elétrica , Fluoretos/análise , Microfluídica , Clorexidina , Saliva/química , Xerostomia/terapia
13.
J Mater Sci ; 58(4): 1680-1693, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36687141

RESUMO

Owing to the rapid development in the field of e-textile-based flexible and portable sensors, the present work demonstrates a fully textile-based stretchable face mask humidity sensor which was created using digital embroidery technique. The design of the sensor was comprised of interdigitated structured electrodes made up of polymer core-based conductive silver-coated threads and hygroscopic threads embedded between them. The fabricated sensor performed well towards moisture detection in accordance with the principle where resistance of the face mask sensor decreased with the increase in the relative humidity along with the changing operational frequency in the range from 1 Hz to 200 kHz. The electrical response (resistance, impedance, capacitance and phase angle) of the novel thread-based sensor towards change in relative humidity was recorded and showed in the present work. The embroidery of polymer-based threads onto the face mask towards humidity sensing offers a novel wearable platform for more extended biomedical applications for detection of various breath biomarkers and thus early diagnosis of diseases. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-08135-2.

14.
JTO Clin Res Rep ; 4(2): 100461, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36718142

RESUMO

Introduction: We present the results of a phase 2a trial of first-line avelumab (anti-programmed death-ligand 1 antibody) plus cetuximab (anti-EGFR antibody) in patients with advanced squamous NSCLC. Methods: Patients with recurrent or metastatic squamous NSCLC received avelumab 800 mg (d 1 and 8), cetuximab 250 mg/m2 (d 1) and 500 mg/m2 (d 8), cisplatin 75 mg/m2 (d 1), and gemcitabine 1250 mg/m2 (d 1 and 8) for four 3-week cycles, followed by avelumab 800 mg and cetuximab 500 mg/m2 every 2 weeks. The primary end point was the best overall response; the secondary end points were progression-free survival, duration of response, overall survival, and safety. Efficacy analyses were reported from an updated data cutoff. Results: A total of 43 patients were enrolled. The median follow-up was 6.6 months for the primary analyses and 9.2 months for the efficacy analyses. In the efficacy analyses, 15 patients had a confirmed partial response (objective response rate, 34.9% [95% confidence interval: 21.0%-50.9%]), and the median duration of response was 7.1 months (95% confidence interval: 4.2-12.5 mo). The median progression-free survival and overall survival were 6.1 months and 10.0 months, respectively. In the safety analyses (primary analysis), 38 patients (88.4%) had a treatment-related adverse event, of whom 24 (55.8%) had a grade 3 or higher treatment-related adverse event. Conclusions: The combination of avelumab + cetuximab and chemotherapy showed antitumor activity and tolerable safety; however, the ORR was not improved compared with those reported for current standards of care (NCT03717155).

15.
Colloids Surf B Biointerfaces ; 222: 113014, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36427407

RESUMO

Deoxycholic acid (DCA) is a bile acid capable of forming micelles and modifying the properties of hydrogels. We incorporated DCA in sodium alginate (SA) and poloxamer 407 matrices creating novel DCA-copolymer hydrogel for therapeutic delivery. Hydrogels were assessed for common rheological properties. Biocompatibility and biological effect were examined on various cell lines. Cell viability was determent in normal and various hypoxic conditions, and full mitochondrial bioenergetic parameters were assessed in cell lines in order to illustrate hydrogel effects on survival, and cell metabolic profile within the hydrogels. Obtained data suggest that a low dose of DCA in permeable, biocompatible hydrogels can be beneficial for cells to combat hypoxic conditions.


Assuntos
Hidrogéis , Micelas , Hidrogéis/farmacologia , Linhagem Celular , Alginatos/farmacologia , Poloxâmero
16.
ACS Omega ; 7(49): 44928-44938, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36530326

RESUMO

The COVID-19 pandemic has created a situation where wearing personal protective masks is a must for every human being and introduced them as a part of everyday life. This work demonstrates a new functionality embedded in single-use face masks through an embroidered humidity sensor. The design of the face mask humidity sensor is comprised of interdigitated electrodes made of polyamide-based conductive threads and common polyester threads which act as a dielectric sensing layer embroidered between them. Therefore, the embroidered sensor acts as a capacitor, the performance of which was studied in increasing humidity conditions in the frequency range from 1 Hz to 100 kHz. The moisture adsorbed by sensitive hygroscopic polyester threads altered their dielectric and permittivity properties which were detected by the change in capacitance values of the face mask sensors at different relative humidity (RH) levels. The calculated limit of detection (LOD) values for the two proposed sensors at different frequencies (1, 10, and 100 kHz) were found in the range from 11.46% RH-27.41% RH and 29.79% RH-38.65% RH. The tested sensors showed good repeatability and stability under different humidity conditions over a period of 80 min. By employing direct embroidery of silver-coated polyamide conductive threads and moisture-sensitive polyester threads onto the face mask, the present work exploits the application of polymer-based textile materials in developing novel stretchable sensing devices toward e-textile applications.

17.
Materials (Basel) ; 15(23)2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36500200

RESUMO

Nitinol (NiTi) alloy is a widely used material for the production of orthodontic archwires. Its corrosion behavior in conditions that exist in the oral cavity still remains a great characterization challenge. The motivation behind this work is to reveal the influence of commercially available mouthwashes on NiTi orthodontic archwires by performing non-electrochemical corrosion tests and quantifying the changes in the nanotopography of commercially available NiTi orthodontic wires. In this study, we examined the behavior of NiTi alloy archwires exposed for 21.5 days to different corrosive media: artificial saliva, Eludril®, Aquafresh®, and Listerine®. The corrosion was characterized by contact mode atomic force microscopy (AFM) before and after the corrosion tests. A novel analysis methodology was developed to obtain insight into locations of material gain or material loss based on standard surface roughness parameters Sa, Sdr, Ssk, and S10z. The developed methodology revealed that fluoride-containing mouthwashes (Aquafresh® and Listerine®) dominantly cause material loss, while chloride-containing mouthwash (Eludril®) can cause both material loss and material gain. The sample exposed to artificial saliva did not display significant changes in any parameter.

18.
Biosensors (Basel) ; 12(12)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36551136

RESUMO

Drug delivery systems are engineered platforms for the controlled release of various therapeutic agents. This paper presents a conductive gold leaf-based microfluidic platform fabricated using xurography technique for its potential implication in controlled drug delivery operations. To demonstrate this, peppermint and eucalyptus essential oils (EOs) were selected as target fluids, which are best known for their medicinal properties in the field of dentistry. The work takes advantage of the high conductivity of the gold leaf, and thus, the response characteristics of the microfluidic chip are studied using electrochemical impedance spectroscopy (EIS) upon injecting EOs into its micro-channels. The effect of the exposure time of the chip to different concentrations (1% and 5%) of EOs was analyzed, and change in electrical resistance was measured at different time intervals of 0 h (the time of injection), 22 h, and 46 h. It was observed that our fabricated device demonstrated higher values of electrical resistance when exposed to EOs for longer times. Moreover, eucalyptus oil had stronger degradable effects on the chip, which resulted in higher electrical resistance than that of peppermint. 1% and 5% of Eucalyptus oil showed an electrical resistance of 1.79 kΩ and 1.45 kΩ at 10 kHz, while 1% and 5% of peppermint oil showed 1.26 kΩ and 1.07 kΩ of electrical resistance at 10 kHz respectively. The findings obtained in this paper are beneficial for designing suitable microfluidic devices to expand their applications for various biomedical purposes.


Assuntos
Óleos Voláteis , Óleos Voláteis/química , Óleo de Eucalipto , Espectroscopia Dielétrica , Ouro , Microfluídica , Folhas de Planta
19.
ACS Omega ; 7(50): 47214-47224, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36570303

RESUMO

Personal heating systems are getting increasing interest because of the need to reduce the negative impact of cold weather on the health of people and animals. Heating the air before inhalation is of great importance as it can reduce the probability of various diseases. In this paper, we present a textile-based heater composed of commercial conductive threads, embroidered on an ordinary protective facemask. We also present the design and implementation details of the temperature monitoring and controlling circuit. Air temperature inside the facemask was monitored by a thermocouple placed in close proximity to the nose (nostrils). Preliminary testing revealed that the difference among temperatures in repeated heating cycles is in the range of ±1.5 °C. The response time for temperature increase from 29.9 to 40.5 °C was about 4 min, while the recovery time from 40.5 to 31.3 °C was about 4.3 min. Safety for human use and wireless data transmission to an application installed on a mobile phone are also demonstrated.

20.
Nanomaterials (Basel) ; 12(22)2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36432311

RESUMO

bioNEMS/MEMS has emerged as an innovative technology for the miniaturisation of biomedical devices with high precision and rapid processing since its first R&D breakthrough in the 1980s. To date, several organic including food waste derived nanomaterials and inorganic nanomaterials (e.g., carbon nanotubes, graphene, silica, gold, and magnetic nanoparticles) have steered the development of high-throughput and sensitive bioNEMS/MEMS-based biosensors, actuator systems, drug delivery systems and implantable/wearable sensors with desirable biomedical properties. Turning food waste into valuable nanomaterials is potential groundbreaking research in this growing field of bioMEMS/NEMS. This review aspires to communicate recent progress in organic and inorganic nanomaterials based bioNEMS/MEMS for biomedical applications, comprehensively discussing nanomaterials criteria and their prospects as ideal tools for biomedical devices. We discuss clinical applications for diagnostic, monitoring, and therapeutic applications as well as the technological potential for cell manipulation (i.e., sorting, separation, and patterning technology). In addition, current in vitro and in vivo assessments of promising nanomaterials-based biomedical devices will be discussed in this review. Finally, this review also looked at the most recent state-of-the-art knowledge on Internet of Things (IoT) applications such as nanosensors, nanoantennas, nanoprocessors, and nanobattery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA