Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Am J Physiol Lung Cell Mol Physiol ; 321(6): L1183-L1193, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34704847

RESUMO

In chronic obstructive pulmonary disease (COPD), lung natural killer cells (NKs) lyse autologous lung epithelial cells in vitro, but underlying mechanisms and their relationship to epithelial cell apoptosis in vivo are undefined. Although this cytolytic capacity of lung NKs depends on priming by dendritic cells (DCs), whether priming correlates with DC maturation or is limited to a specific DC subset is also unknown. We recruited ever-smokers (≥10 pack-years; n = 96) undergoing clinically indicated lung resections. We analyzed lung NKs for cytotoxic molecule transcripts and for cytotoxicity, which we correlated with in situ detection of activated Caspase-3/7+ airway epithelial cells. To investigate DC priming, we measured lung DC expression of CCR2, CCR7, and CX3CR1 and cocultured peripheral blood NKs with autologous lung DCs, either matured using lipopolysaccharide (LPS) (nonobstructed smokers) or separated into conventional dendritic cell type-1 (cDC1) versus cDC type-2 (cDC2) (COPD). Lung NKs in COPD expressed more perforin (P < 0.02) and granzyme B (P < 0.03) transcripts; inhibiting perforin blocked in vitro killing by lung NKs. Cytotoxicity in vitro correlated significantly (Sr = 0.68, P = 0.0043) with numbers of apoptotic epithelial cells per airway. In nonobstructed smokers, LPS-induced maturation enhanced DC-mediated priming of blood NKs, reflected by greater epithelial cell death. Although CCR7 expression was greater in COPD in both cDC1 (P < 0.03) and cDC2 (P = 0.009), only lung cDC1 primed NK killing. Thus, rather than being intrinsic to those with COPD, NK priming is a capacity of human lung DCs that is inducible by recognition of bacterial (and possibly other) danger signals and restricted to the cDC1 subset.


Assuntos
Células Dendríticas/imunologia , Células Epiteliais/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Células Matadoras Naturais/imunologia , Pulmão/patologia , Perforina/efeitos adversos , Doença Pulmonar Obstrutiva Crônica/patologia , Estudos de Casos e Controles , Citotoxinas/efeitos adversos , Células Dendríticas/efeitos dos fármacos , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Feminino , Granzimas/genética , Granzimas/metabolismo , Humanos , Células Matadoras Naturais/metabolismo , Células Matadoras Naturais/patologia , Pulmão/efeitos dos fármacos , Pulmão/imunologia , Pulmão/metabolismo , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/induzido quimicamente , Doença Pulmonar Obstrutiva Crônica/imunologia , Doença Pulmonar Obstrutiva Crônica/metabolismo , Fumar/efeitos adversos
3.
Am J Respir Crit Care Med ; 198(9): 1140-1150, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-29676596

RESUMO

RATIONALE: Lung natural killer cells (NKs) kill a greater percentage of autologous lung parenchymal cells in chronic obstructive pulmonary disease (COPD) than in nonobstructed smokers. To become cytotoxic, NKs require priming, typically by dendritic cells (DCs), but whether priming occurs in the lungs in COPD is unknown. METHODS: We used lung tissue and in some cases peripheral blood from patients undergoing clinically indicated resections to determine in vitro killing of CD326+ lung epithelial cells by isolated lung CD56+ NKs. We also measured the cytotoxicity of unprimed blood NKs after preincubation with lung DCs. To investigate mechanisms of DC-mediated priming, we used murine models of COPD induced by cigarette smoke (CS) exposure or by polymeric immunoglobulin receptor (pIgR) deficiency, and blocked IL-15Rα (IL-15 receptor α subunit) trans-presentation by genetic and antibody approaches. RESULTS: Human lung NKs killed isolated autologous lung epithelial cells; cytotoxicity was increased (P = 0.0001) in COPD, relative to smokers without obstruction. Similarly, increased lung NK cytotoxicity compared with control subjects was observed in CS-exposed mice and pIgR-/- mice. Blood NKs both from smokers without obstruction and subjects with COPD showed minimal epithelial cell killing, but in COPD, preincubation with lung DCs increased cytotoxicity. NKs were primed by CS-exposed murine DCs in vitro and in vivo. Inhibiting IL-15Rα trans-presentation eliminated NK priming both by murine CS-exposed DCs and by lung DCs from subjects with COPD. CONCLUSIONS: Heightened NK cytotoxicity against lung epithelial cells in COPD results primarily from lung DC-mediated priming via IL-15 trans-presentation on IL-15Rα. Future studies are required to test whether increased NK cytotoxicity contributes to COPD pathogenesis.


Assuntos
Células Dendríticas/imunologia , Subunidade alfa de Receptor de Interleucina-15/genética , Subunidade alfa de Receptor de Interleucina-15/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Doença Pulmonar Obstrutiva Crônica/imunologia , Idoso , Animais , Fumar Cigarros/imunologia , Citotoxinas , Modelos Animais de Doenças , Células Epiteliais/imunologia , Feminino , Citometria de Fluxo , Humanos , Técnicas In Vitro , Ativação Linfocitária/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estudos Prospectivos , Doença Pulmonar Obstrutiva Crônica/genética
5.
mBio ; 7(4)2016 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-27406560

RESUMO

UNLABELLED: Anti-tumor necrosis factor alpha (anti-TNF-α) therapies have been increasingly used to treat inflammatory diseases and are associated with increased risk of invasive fungal infections, including Cryptococcus neoformans infection. Using a mouse model of cryptococcal infection, we investigated the mechanism by which disruption of early TNF-α signaling results in the development of nonprotective immunity against C. neoformans We found that transient depletion of TNF-α inhibited pulmonary fungal clearance and enhanced extrapulmonary dissemination of C. neoformans during the adaptive phase of the immune response. Higher fungal burdens in TNF-α-depleted mice were accompanied by markedly impaired Th1 and Th17 responses in the infected lungs. Furthermore, early TNF-α depletion also resulted in disrupted transcriptional initiation of the Th17 polarization program and subsequent upregulation of Th1 genes in CD4(+) T cells in the lung-associated lymph nodes (LALN) of C. neoformans-infected mice. These defects in LALN T cell responses were preceded by a dramatic shift from a classical toward an alternative activation of dendritic cells (DC) in the LALN of TNF-α-depleted mice. Taken together, our results indicate that early TNF-α signaling is required for optimal DC activation, and the initial Th17 response followed by Th1 transcriptional prepolarization of T cells in the LALN, which further drives the development of protective immunity against cryptococcal infection in the lungs. Thus, administration of anti-TNF-α may introduce a particularly greater risk for newly acquired fungal infections that require generation of protective Th1/Th17 responses for their containment and clearance. IMPORTANCE: Increased susceptibility to invasive fungal infections in patients on anti-TNF-α therapies underlines the need for understanding the cellular effects of TNF-α signaling in promoting protective immunity to fungal pathogens. Here, we demonstrate that early TNF-α signaling is required for classical activation and accumulation of DC in LALN of C. neoformans-infected mice. Subsequent transcriptional initiation of Th17 followed by Th1 programming in LALN results in pulmonary accumulation of gamma interferon- and interleukin-17A-producing T cells and effective fungal clearance. All of these crucial steps are severely impaired in mice that undergo anti-TNF-α treatment, consistent with their inability to clear C. neoformans This study identified critical interactions between cells of the innate immune system (DC), the emerging T cell responses, and cytokine networks with a central role for TNF-α which orchestrate the development of the immune protection against cryptococcal infection. This information will be important in aiding development and understanding the potential side effects of immunotherapies.


Assuntos
Criptococose/imunologia , Criptococose/prevenção & controle , Células Dendríticas/imunologia , Pneumopatias/imunologia , Pneumopatias/prevenção & controle , Transdução de Sinais , Fator de Necrose Tumoral alfa/antagonistas & inibidores , Animais , Carga Bacteriana , Linfócitos T CD4-Positivos/imunologia , Cryptococcus neoformans/imunologia , Modelos Animais de Doenças , Pulmão/imunologia , Pulmão/microbiologia , Linfonodos/imunologia , Camundongos
6.
J Immunol ; 196(3): 1366-75, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26718338

RESUMO

Apoptotic cell (AC) clearance (efferocytosis) is an evolutionarily conserved process essential for immune health, particularly to maintain self-tolerance. Despite identification of many recognition receptors and intracellular signaling components of efferocytosis, its negative regulation remains incompletely understood and has not previously been known to involve microRNAs (miRs). In this article, we show that miR-34a (gene ID 407040), well recognized as a p53-dependent tumor suppressor, mediates coordinated negative regulation of efferocytosis by resident murine and human tissue macrophages (Mø). The miR-34a expression varied greatly between Mø from different tissues, correlating inversely with their capacity for AC uptake. Transient or genetic knockdown of miR-34a increased efferocytosis, whereas miR-34a overexpression decreased efferocytosis, without altering recognition of live, necrotic, or Ig-opsonized cells. The inhibitory effect of miR-34a was mediated both by reduced expression of Axl, a receptor tyrosine kinase known to recognize AC, and of the deacetylase silent information regulator T1, which had not previously been linked to efferocytosis by tissue Mø. Exposure to AC downregulated Mø miR-34a expression, resulting in a positive feedback loop that increased subsequent capacity to engulf AC. These findings demonstrate that miR-34a both specifically regulates and is regulated by efferocytosis. Given the ability of efferocytosis to polarize ingesting Mø uniquely and to reduce their host-defense functions, dynamic negative regulation by miR-34a provides one means of fine-tuning Mø behavior toward AC in specific tissue environments with differing potentials for microbial exposure.


Assuntos
Apoptose/genética , Macrófagos/imunologia , MicroRNAs/imunologia , Fagocitose/genética , Sirtuína 1/imunologia , Animais , Apoptose/imunologia , Citometria de Fluxo , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose/imunologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
7.
J Immunol ; 195(1): 174-84, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-25987742

RESUMO

Inhaled corticosteroids (ICS) increase community-acquired pneumonia (CAP) incidence in patients with chronic obstructive pulmonary disease (COPD) by unknown mechanisms. Apoptosis is increased in the lungs of COPD patients. Uptake of apoptotic cells (ACs) ("efferocytosis") by alveolar macrophages (AMøs) reduces their ability to combat microbes, including Streptococcus pneumoniae, the most common cause of CAP in COPD patients. Having shown that ICS significantly increase AMø efferocytosis, we hypothesized that this process, termed glucocorticoid-augmented efferocytosis, might explain the association of CAP with ICS therapy in COPD. To test this hypothesis, we studied the effects of fluticasone, AC, or both on AMøs of C57BL/6 mice in vitro and in an established model of pneumococcal pneumonia. Fluticasone plus AC significantly reduced TLR4-stimulated AMø IL-12 production, relative to either treatment alone, and decreased TNF-α, CCL3, CCL5, and keratinocyte-derived chemoattractant/CXCL1, relative to AC. Mice treated with fluticasone plus AC before infection with viable pneumococci developed significantly more lung CFUs at 48 h. However, none of the pretreatments altered inflammatory cell recruitment to the lungs at 48 h postinfection, and fluticasone plus AC less markedly reduced in vitro mediator production to heat-killed pneumococci. Fluticasone plus AC significantly reduced in vitro AMø killing of pneumococci, relative to other conditions, in part by delaying phagolysosome acidification without affecting production of reactive oxygen or nitrogen species. These results support glucocorticoid-augmented efferocytosis as a potential explanation for the epidemiological association of ICS therapy of COPD patients with increased risk for CAP, and establish murine experimental models to dissect underlying molecular mechanisms.


Assuntos
Corticosteroides/efeitos adversos , Androstadienos/efeitos adversos , Pulmão/imunologia , Macrófagos Alveolares/imunologia , Pneumonia Pneumocócica/imunologia , Animais , Apoptose , Quimiocina CCL3/genética , Quimiocina CCL3/imunologia , Quimiocina CCL5/genética , Quimiocina CCL5/imunologia , Quimiocina CXCL1/genética , Quimiocina CXCL1/imunologia , Contagem de Colônia Microbiana , Modelos Animais de Doenças , Fluticasona , Regulação da Expressão Gênica , Humanos , Interleucina-12/genética , Interleucina-12/imunologia , Pulmão/microbiologia , Pulmão/patologia , Macrófagos Alveolares/microbiologia , Macrófagos Alveolares/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fagocitose , Pneumonia Pneumocócica/induzido quimicamente , Pneumonia Pneumocócica/genética , Pneumonia Pneumocócica/microbiologia , Espécies Reativas de Nitrogênio/imunologia , Espécies Reativas de Oxigênio/imunologia , Streptococcus pneumoniae/imunologia , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
8.
J Transl Med ; 13: 19, 2015 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-25622723

RESUMO

BACKGROUND: Subpopulations and Intermediate Outcomes in COPD Study (SPIROMICS) is a multi-center longitudinal, observational study to identify novel phenotypes and biomarkers of chronic obstructive pulmonary disease (COPD). In a subset of 300 subjects enrolled at six clinical centers, we are performing flow cytometric analyses of leukocytes from induced sputum, bronchoalveolar lavage (BAL) and peripheral blood. To minimize several sources of variability, we use a "just-in-time" design that permits immediate staining without pre-fixation of samples, followed by centralized analysis on a single instrument. METHODS: The Immunophenotyping Core prepares 12-color antibody panels, which are shipped to the six Clinical Centers shortly before study visits. Sputum induction occurs at least two weeks before a bronchoscopy visit, at which time peripheral blood and bronchoalveolar lavage are collected. Immunostaining is performed at each clinical site on the day that the samples are collected. Samples are fixed and express shipped to the Immunophenotyping Core for data acquisition on a single modified LSR II flow cytometer. Results are analyzed using FACS Diva and FloJo software and cross-checked by Core scientists who are blinded to subject data. RESULTS: Thus far, a total of 152 sputum samples and 117 samples of blood and BAL have been returned to the Immunophenotyping Core. Initial quality checks indicate useable data from 126 sputum samples (83%), 106 blood samples (91%) and 91 BAL samples (78%). In all three sample types, we are able to identify and characterize the activation state or subset of multiple leukocyte cell populations (including CD4+ and CD8+ T cells, B cells, monocytes, macrophages, neutrophils and eosinophils), thereby demonstrating the validity of the antibody panel. CONCLUSIONS: Our study design, which relies on bi-directional communication between clinical centers and the Core according to a pre-specified protocol, appears to reduce several sources of variability often seen in flow cytometric studies involving multiple clinical sites. Because leukocytes contribute to lung pathology in COPD, these analyses will help achieve SPIROMICS aims of identifying subgroups of patients with specific COPD phenotypes. Future analyses will correlate cell-surface markers on a given cell type with smoking history, spirometry, airway measurements, and other parameters. TRIAL REGISTRATION: This study was registered with ClinicalTrials.gov as NCT01969344 .


Assuntos
Líquido da Lavagem Broncoalveolar , Imunofenotipagem/métodos , Doença Pulmonar Obstrutiva Crônica/sangue , Doença Pulmonar Obstrutiva Crônica/metabolismo , Escarro/metabolismo , Biomarcadores , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Separação Celular , Células Dendríticas/citologia , Citometria de Fluxo , Humanos , Leucócitos/citologia , Estudos Longitudinais , Macrófagos/citologia , Fenótipo , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Projetos de Pesquisa , Tamanho da Amostra , Fumar , Espirometria
9.
PLoS One ; 9(7): e103840, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25078269

RESUMO

UNLABELLED: CD56+ natural killer (NK) and CD56+ T cells, from sputum or bronchoalveolar lavage of subjects with chronic obstructive pulmonary disease (COPD) are more cytotoxic to highly susceptible NK targets than those from control subjects. Whether the same is true in lung parenchyma, and if NK activity actually contributes to emphysema progression are unknown. To address these questions, we performed two types of experiments on lung tissue from clinically-indicated resections (n = 60). First, we used flow cytometry on fresh single-cell suspension to measure expression of cell-surface molecules (CD56, CD16, CD8, NKG2D and NKp44) on lung lymphocytes and of the 6D4 epitope common to MICA and MICB on lung epithelial (CD326+) cells. Second, we sequentially isolated CD56+, CD8+ and CD4+ lung lymphocytes, co-cultured each with autologous lung target cells, then determined apoptosis of individual target cells using Annexin-V and 7-AAD staining. Lung NK cells (CD56+ CD3-) and CD56+ T cells (CD56+ CD3+) were present in a range of frequencies that did not differ significantly between smokers without COPD and subjects with COPD. Lung NK cells had a predominantly "cytotoxic" CD56+ CD16+ phenotype; their co-expression of CD8 was common, but the percentage expressing CD8 fell as FEV1 % predicted decreased. Greater expression by autologous lung epithelial cells of the NKG2D ligands, MICA/MICB, but not expression by lung CD56+ cells of the activating receptor NKG2D, correlated inversely with FEV1 % predicted. Lung CD56+ lymphocytes, but not CD4+ or CD8+ conventional lung T cells, rapidly killed autologous lung cells without additional stimulation. Such natural cytotoxicity was increased in subjects with severe COPD and was unexplained in multiple regression analysis by age or cancer as indication for surgery. These data show that as spirometry worsens in COPD, CD56+ lung lymphocytes exhibit spontaneous cytotoxicity of autologous structural lung cells, supporting their potential role in emphysema progression. TRIAL REGISTRATION: ClinicalTrials.gov NCT00281229.


Assuntos
Apoptose , Antígeno CD56/metabolismo , Doença Pulmonar Obstrutiva Crônica/imunologia , Linfócitos T Citotóxicos/fisiologia , Idoso , Células Epiteliais Alveolares/fisiologia , Linfócitos T CD8-Positivos/imunologia , Células Cultivadas , Feminino , Humanos , Células Matadoras Naturais/imunologia , Pulmão/patologia , Masculino , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/patologia
10.
Am J Pathol ; 184(2): 454-63, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24333113

RESUMO

Cigarette smoke (CS)-induced lung injury involves innate immune responses. The activation of innate effector cells is thought to require cross talk with dendritic cells (DCs) and macrophages, but the mediators of interaction are unknown. One candidate, CC chemokine receptor 4 (CCR4), is expressed by innate and adaptive effector cells, and its ligands are produced by DCs and macrophages. Using flow cytometry and confocal microscopy, we defined innate responses of lung myeloid DCs, macrophages, and conventional natural killer (NK) cells in mice exposed to CS over 4 days and examined the contribution of CCR4 using CCR4 knockout (CCR4(-/-)) mice. CS affected populations differently, causing an increase in F4/80(+) macrophages, a reduction in parenchymal CD11c(+)CD11b(+)CD103(-) DCs, but no effect on mucosal CD11c(+)CD11b(-)CD103(+) DCs. CS also induced a population of primed/activated CD69(+) NK cells and bronchoepithelial expression of the stress-related NKG2D receptor-activating protein, retinoic acid early transcript 1. CS-exposed CCR4(-/-) mice were similar to controls regarding effects on DCs and macrophages but displayed substantially impaired NK priming/activation and reduced expression of transcripts for interferon gamma, CXCL10, and retinoic acid early transcript 1. Quantitative confocal microscopy revealed that lungs of CS-exposed CCR4(-/-) mice had significantly reduced contacts of NK cells with CD11c(+) cells. These findings demonstrate that acute CS exposure elicits NK cell responses and suggest that CCR4 promotes NK cell priming/activation by mediating contacts with sentinel cells in the lung.


Assuntos
Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Receptores CCR4/metabolismo , Fumar/efeitos adversos , Animais , Antígeno CD11c/metabolismo , Comunicação Celular/imunologia , Células Dendríticas/metabolismo , Células Dendríticas/patologia , Feminino , Técnicas de Inativação de Genes , Antígenos de Histocompatibilidade Classe II/metabolismo , Imunidade Inata , Células Matadoras Naturais/patologia , Ligantes , Pulmão/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores CCR4/deficiência , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA