RESUMO
Groundwater contamination of geogenic arsenic (As) remains a global health threat, particularly in south-east Asia. The prominent correlation often observed between high As concentrations and methane (CH4) stimulated the analysis of the gas dynamics in an As contaminated aquifer, whereby noble and reactive gases were analysed. Results show a progressive depletion of atmospheric gases (Ar, Kr and N2) alongside highly increasing CH4, implying that a free gas phase comprised mainly of CH4 is formed within the aquifer. In contrast, Helium (He) concentrations are high within the CH4 (gas) producing zone, suggesting longer (groundwater) residence times. We hypothesized that the observed free (CH4) gas phase severely detracts local groundwater (flow) and significantly reduces water renewal within the gas producing zone. Results are in-line with this hypothesis, however, a second hypothesis has been developed, which focuses on the potential transport of He from an adjacent aquitard into the (CH4) gas producing zone. This second hypothesis was formulated as it resolves the particularly high He concentrations observed, and since external solute input from the overlying heterogeneous aquitard cannot be excluded. The proposed feedback between the gas phase and hydraulics provides a plausible explanation of the anti-intuitive correlation between high As and CH4, and the spatially highly patchy distribution of dissolved As concentrations in contaminated aquifers. Furthermore, the increased groundwater residence time would allow for the dissolution of more crystalline As-hosting iron(Fe)-oxide phases in conjunction with the formation of more stable secondary Fe minerals in the hydraulically-slowed (i.e., gas producing) zone; a subject which calls for further investigation.
RESUMO
Geogenic arsenic (As) contamination of groundwater is a health threat to millions of people worldwide, particularly in alluvial regions of South and Southeast Asia. Mitigation measures are often hindered by high heterogeneities in As concentrations, the cause(s) of which are elusive. Here we used a comprehensive suite of stable isotope analyses and hydrogeochemical parameters to shed light on the mechanisms in a typical high-As Holocene aquifer near Hanoi where groundwater is advected to a low-As Pleistocene aquifer. Carbon isotope signatures (δ13C-CH4, δ13C-DOC, δ13C-DIC) provided evidence that fermentation, methanogenesis and methanotrophy are actively contributing to the As heterogeneity. Methanogenesis occurred concurrently where As levels are high (>200 µg/L) and DOC-enriched aquitard pore water infiltrates into the aquifer. Along the flowpath to the Holocene/Pleistocene aquifer transition, methane oxidation causes a strong shift in δ13C-CH4 from -87 to +47, indicating high reactivity. These findings demonstrate a previously overlooked role of methane cycling and DOC infiltration in high-As aquifers.
Assuntos
Arsênio , Água Subterrânea , Poluentes Químicos da Água , Arsênio/análise , Carbono , Monitoramento Ambiental , Humanos , Metano , Poluentes Químicos da Água/análiseRESUMO
Although phosphate (PO43-) may play a decisive role in enriching toxic arsenic (As) in the groundwater of many Asian deltas, knowledge gaps exist regarding its interactions with As. This study investigates the simultaneous immobilisation of PO43- and As in aquifer sediments at a redox transition zone in the Red River Delta of Vietnam. The majority of PO43- and As was found to be structurally bound in layers of Fe(III)-(oxyhydr)oxide precipitates, indicating that their formation represents a dominant immobilisation mechanism. This immobilisation was also closely linked to sorption. In the surface sorbed sediment pools, the molar ratios of total P to As were one order of magnitude higher than found in groundwater, reflecting a preferential sorption of PO43- over As. However, this competitive sorption was largely dependent on the presence of Fe(III)-(oxyhydr)oxides. Ongoing contact of the aquifer sediments with iron-reducing groundwater resulted in the reductive dissolution of weakly crystalline Fe(III)-(oxyhydr)oxides, which was accompanied by decreased competition for sorption sites between PO43- and As. Our results emphasise that, to be successful in the medium and long term, remediation approaches and management strategies need to consider competitive sorption between PO43- and As and dynamics of the biogeochemical Fe-cycle.
RESUMO
The fate of arsenic (As) in groundwater is determined by multiple interrelated microbial and abiotic processes that contribute to As (im)mobilization. Most studies to date have investigated individual processes related to As (im)mobilization rather than the complex networks present in situ. In this study, we used RNA-based microbial community analysis in combination with groundwater hydrogeochemical measurements to elucidate the behavior of As along a 2â¯km transect near Hanoi, Vietnam. The transect stretches from the riverbank across a strongly reducing and As-contaminated Holocene aquifer, followed by a redox transition zone (RTZ) and a Pleistocene aquifer, at which As concentrations are low. Our analyses revealed fermentation and methanogenesis as important processes providing electron donors, fueling the microbially mediated reductive dissolution of As-bearing Fe(III) minerals and ultimately promoting As mobilization. As a consequence of high CH4 concentrations, methanotrophs thrive across the Holocene aquifer and the redox transition zone. Finally, our results underline the role of SO42--reducing and putative Fe(II)-/As(III)-oxidizing bacteria as a sink for As, particularly at the RTZ. Overall, our results suggest that a complex network of microbial and biogeochemical processes has to be considered to better understand the biogeochemical behavior of As in groundwater.
RESUMO
Geogenic arsenic (As) contamination of groundwater poses a major threat to global health, particularly in Asia. To mitigate this exposure, groundwater is increasingly extracted from low-As Pleistocene aquifers. This, however, disturbs groundwater flow and potentially draws high-As groundwater into low-As aquifers. Here we report a detailed characterisation of the Van Phuc aquifer in the Red River Delta region, Vietnam, where high-As groundwater from a Holocene aquifer is being drawn into a low-As Pleistocene aquifer. This study includes data from eight years (2010-2017) of groundwater observations to develop an understanding of the spatial and temporal evolution of the redox status and groundwater hydrochemistry. Arsenic concentrations were highly variable (0.5-510 µg/L) over spatial scales of <200 m. Five hydro(geo)chemical zones (indicated as A to E) were identified in the aquifer, each associated with specific As mobilisation and retardation processes. At the riverbank (zone A), As is mobilised from freshly deposited sediments where Fe(III)-reducing conditions occur. Arsenic is then transported across the Holocene aquifer (zone B), where the vertical intrusion of evaporative water, likely enriched in dissolved organic matter, promotes methanogenic conditions and further release of As (zone C). In the redox transition zone at the boundary of the two aquifers (zone D), groundwater arsenic concentrations decrease by sorption and incorporations onto Fe(II) carbonates and Fe(II)/Fe(III) (oxyhydr)oxides under reducing conditions. The sorption/incorporation of As onto Fe(III) minerals at the redox transition and in the Mn(IV)-reducing Pleistocene aquifer (zone E) has consistently kept As concentrations below 10 µg/L for the studied period of 2010-2017, and the location of the redox transition zone does not appear to have propagated significantly. Yet, the largest temporal hydrochemical changes were found in the Pleistocene aquifer caused by groundwater advection from the Holocene aquifer. This is critical and calls for detailed investigations.
RESUMO
Ice nucleation in cold clouds is a decisive step in the formation of rain and snow. Observations and modelling suggest that variations in the concentrations of ice nucleating particles (INPs) affect timing, location and amount of precipitation. A quantitative description of the abundance and variability of INPs is crucial to assess and predict their influence on precipitation. Here we used the hydrological indicator δ(18)O to derive the fraction of water vapour lost from precipitating clouds and correlated it with the abundance of INPs in freshly fallen snow. Results show that the number of INPs active at temperatures ≥ -10 °C (INPs-10) halves for every 10% of vapour lost through precipitation. Particles of similar size (>0.5 µm) halve in number for only every 20% of vapour lost, suggesting effective microphysical processing of INPs during precipitation. We show that INPs active at moderate supercooling are rapidly depleted by precipitating clouds, limiting their impact on subsequent rainfall development in time and space.