Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 48(9): 5081-5093, 2020 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-32313955

RESUMO

Flaviviruses, including dengue virus and Zika virus, contain a single-stranded positive sense RNA genome that encodes viral proteins essential for replication and also serves as the template for new genome synthesis. As these processes move in opposite directions along the genome, translation must be inhibited at a defined point following infection to clear the template of ribosomes to allow efficient replication. Here, we demonstrate in vitro and in cell-based assays that the viral RNA polymerase, NS5, inhibits translation of the viral genome. By reconstituting translation in vitro using highly purified components, we show that this translation block occurs at the initiation stage and that translation inhibition depends on NS5-RNA interaction, primarily through association with the 5' replication promoter region. This work supports a model whereby expression of a viral protein signals successful translation of the infecting genome, prompting a switch to a ribosome depleted replication-competent form.


Assuntos
RNA Polimerases Dirigidas por DNA/metabolismo , Genoma Viral , Biossíntese de Proteínas , RNA Viral/metabolismo , Proteínas não Estruturais Virais/metabolismo , Animais , Chlorocebus aethiops , Vírus da Dengue/enzimologia , Iniciação Traducional da Cadeia Peptídica , RNA Viral/química , Células Vero , Replicação Viral , Zika virus/enzimologia , Zika virus/fisiologia
2.
PLoS One ; 11(3): e0152193, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27002636

RESUMO

BACKGROUND: Waddlia chondrophila (W. chondrophila) is an emerging agent of respiratory and reproductive disease in humans and cattle. The organism is a member of the order Chlamydiales, and shares many similarities at the genome level and in growth studies with other well-characterised zoonotic chlamydial agents, such as Chlamydia abortus (C. abortus). The current study investigated the growth characteristics and innate immune responses of human and ruminant epithelial cells in response to infection with W. chondrophila. METHODS: Human epithelial cells (HEp2) were infected with W. chondrophila for 24h. CXCL8 release was significantly elevated in each of the cell lines by active-infection with live W. chondrophila, but not by exposure to UV-killed organisms. Inhibition of either p38 or p42/44 MAPK significantly inhibited the stimulation of CXCL8 release in each of the cell lines. To determine the pattern recognition receptor through which CXCL8 release was stimulated, wild-type HEK293 cells which express no TLR2, TLR4, NOD2 and only negligible NOD1 were infected with live organisms. A significant increase in CXCL8 was observed. CONCLUSIONS/SIGNIFICANCE: W. chondrophila actively infects and replicates within both human and ruminant epithelial cells stimulating CXCL8 release. Release of CXCL8 is significantly inhibited by inhibition of either p38 or p42/44 MAPK indicating a role for this pathway in the innate immune response to W. chondrophila infection. W. chondrophila stimulation of CXCL8 secretion in HEK293 cells indicates that TLR2, TLR4, NOD2 and NOD1 receptors are not essential to the innate immune response to infection.


Assuntos
Chlamydiales/metabolismo , Células Epiteliais/metabolismo , Interleucina-8/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Linhagem Celular , Células HEK293 , Humanos , Imunidade Inata/fisiologia , Receptores de Reconhecimento de Padrão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA