RESUMO
RATIONALE: Bronchopulmonary dysplasia (BPD) in preterm-born infants is a risk factor for chronic airway obstruction in adulthood. Cytotoxic T-cells are implicated in COPD, but their involvement in BPD is not known. OBJECTIVES: To characterise the distribution of airway T-cell subsets in adults with a history of BPD. METHODS: Young adults with former BPD (n=22; median age 19.6â years), age-matched adults born preterm (n=22), patients with allergic asthma born at term (n=22) and healthy control subjects born at term (n=24) underwent bronchoalveolar lavage (BAL). T-cell subsets in BAL were analysed using flow cytometry. RESULTS: The total number of cells and the differential cell counts in BAL were similar among the study groups. The percentage of CD3+CD8+ T-cells was higher (p=0.005) and the proportion of CD3+CD4+ T-cells was reduced (p=0.01) in the BPD group, resulting in a lower CD4/CD8 ratio (p=0.007) compared to the healthy controls (median 2.2 versus 5.3). In BPD and preterm-born study subjects, both CD3+CD4+ T-cells (rs=0.38, p=0.03) and CD4/CD8 ratio (rs=0.44, p=0.01) correlated positively with forced expiratory volume in 1â s (FEV1). Furthermore, CD3+CD8+ T-cells were negatively correlated with both FEV1 and FEV1/forced vital capacity (rs= -0.44, p=0.09 and rs= -0.41, p=0.01, respectively). CONCLUSIONS: Young adults with former BPD have a T-cell subset pattern in the airways resembling features of COPD. Our findings are compatible with the hypothesis that CD3+CD8+ T-cells are involved in mechanisms behind chronic airway obstruction in these patients.
Assuntos
Obstrução das Vias Respiratórias , Displasia Broncopulmonar , Doença Pulmonar Obstrutiva Crônica , Adulto , Linfócitos T CD8-Positivos , Volume Expiratório Forçado , Humanos , Recém-Nascido , Adulto JovemRESUMO
INTRODUCTION: Asthma is a heterogeneous disease with poorly defined phenotypes. Patients with severe asthma often receive multiple treatments including oral corticosteroids (OCS). Treatment may modify the observed metabotype, rendering it challenging to investigate underlying disease mechanisms. Here, we aimed to identify dysregulated metabolic processes in relation to asthma severity and medication. METHODS: Baseline urine was collected prospectively from healthy participants (n=100), patients with mild-to-moderate asthma (n=87) and patients with severe asthma (n=418) in the cross-sectional U-BIOPRED cohort; 12-18-month longitudinal samples were collected from patients with severe asthma (n=305). Metabolomics data were acquired using high-resolution mass spectrometry and analysed using univariate and multivariate methods. RESULTS: A total of 90 metabolites were identified, with 40 significantly altered (p<0.05, false discovery rate <0.05) in severe asthma and 23 by OCS use. Multivariate modelling showed that observed metabotypes in healthy participants and patients with mild-to-moderate asthma differed significantly from those in patients with severe asthma (p=2.6×10-20), OCS-treated asthmatic patients differed significantly from non-treated patients (p=9.5×10-4), and longitudinal metabotypes demonstrated temporal stability. Carnitine levels evidenced the strongest OCS-independent decrease in severe asthma. Reduced carnitine levels were associated with mitochondrial dysfunction via decreases in pathway enrichment scores of fatty acid metabolism and reduced expression of the carnitine transporter SLC22A5 in sputum and bronchial brushings. CONCLUSIONS: This is the first large-scale study to delineate disease- and OCS-associated metabolic differences in asthma. The widespread associations with different therapies upon the observed metabotypes demonstrate the need to evaluate potential modulating effects on a treatment- and metabolite-specific basis. Altered carnitine metabolism is a potentially actionable therapeutic target that is independent of OCS treatment, highlighting the role of mitochondrial dysfunction in severe asthma.
Assuntos
Antiasmáticos , Asma , Corticosteroides/uso terapêutico , Antiasmáticos/uso terapêutico , Asma/genética , Carnitina/uso terapêutico , Estudos Transversais , Humanos , Índice de Gravidade de Doença , Membro 5 da Família 22 de Carreadores de SolutoRESUMO
Many wildlife populations are declining at rates higher than can be explained by known threats to biodiversity. Recently, thiamine (vitamin B1) deficiency has emerged as a possible contributing cause. Here, thiamine status was systematically investigated in three animal classes: bivalves, ray-finned fishes, and birds. Thiamine diphosphate is required as a cofactor in at least five life-sustaining enzymes that are required for basic cellular metabolism. Analysis of different phosphorylated forms of thiamine, as well as of activities and amount of holoenzyme and apoenzyme forms of thiamine-dependent enzymes, revealed episodically occurring thiamine deficiency in all three animal classes. These biochemical effects were also linked to secondary effects on growth, condition, liver size, blood chemistry and composition, histopathology, swimming behaviour and endurance, parasite infestation, and reproduction. It is unlikely that the thiamine deficiency is caused by impaired phosphorylation within the cells. Rather, the results point towards insufficient amounts of thiamine in the food. By investigating a large geographic area, by extending the focus from lethal to sublethal thiamine deficiency, and by linking biochemical alterations to secondary effects, we demonstrate that the problem of thiamine deficiency is considerably more widespread and severe than previously reported.