Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Mol Genet Metab ; 139(3): 107610, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37245379

RESUMO

PMM2-CDG is the most common defect among the congenital disorders of glycosylation. In order to investigate the effect of hypoglycosylation on important cellular pathways, we performed extensive biochemical studies on skin fibroblasts of PMM2-CDG patients. Among others, acylcarnitines, amino acids, lysosomal proteins, organic acids and lipids were measured, which all revealed significant abnormalities. There was an increased expression of acylcarnitines and amino acids associated with increased amounts of calnexin, calreticulin and protein-disulfid-isomerase in combination with intensified amounts of ubiquitinylated proteins. Lysosomal enzyme activities were widely decreased as well as citrate and pyruvate levels indicating mitochondrial dysfunction. Main lipid classes such as phosphatidylethanolamine, cholesterol or alkyl-phosphatidylcholine, as well as minor lipid species like hexosylceramide, lysophosphatidylcholines or phosphatidylglycerol, were abnormal. Biotinidase and catalase activities were severely reduced. In this study we discuss the impact of metabolite abnormalities on the phenotype of PMM2-CDG. In addition, based on our data we propose new and easy-to-implement therapeutic approaches for PMM2-CDG patients.


Assuntos
Defeitos Congênitos da Glicosilação , Fosfotransferases (Fosfomutases) , Humanos , Defeitos Congênitos da Glicosilação/genética , Defeitos Congênitos da Glicosilação/terapia , Defeitos Congênitos da Glicosilação/metabolismo , Glicosilação , Fosfotransferases (Fosfomutases)/genética , Aminoácidos/metabolismo , Lipídeos
2.
Anal Chem ; 94(20): 7329-7338, 2022 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-35549177

RESUMO

Mass spectrometry (MS) easily detects C-mannosylated peptides from purified proteins but not from complex biological samples. Enrichment of specific glycopeptides by lectin affinity prior to MS analysis has been widely applied to support glycopeptide identification but was until now not available for C-mannosylated peptides. Here, we used the α-mannose-specific Burkholderia cenocepacia lectin A (BC2L-A) and show that, in addition to its previously demonstrated high-mannose N-glycan binding capability, this lectin is able to retain C- and O-mannosylated peptides. Besides testing binding abilities to standard peptides, we applied BC2L-A affinity to enrich C-mannosylated peptides from complex samples of tryptic digests of HEK293 and MCF10A whole cell extracts, which led to the identification of novel C-mannosylation sites. In conclusion, BC2L-A enabled specific enrichment of C- and O-mannosylated peptides and might have superior properties over other mannose binding lectins for this purpose.


Assuntos
Burkholderia cenocepacia , Manose , Burkholderia cenocepacia/química , Burkholderia cenocepacia/metabolismo , Glicopeptídeos/metabolismo , Glicosilação , Células HEK293 , Humanos , Lectinas/química , Manose/química
3.
Antonie Van Leeuwenhoek ; 114(7): 1141-1153, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33945065

RESUMO

The NCW2 gene was recently described as encoding a GPI-bounded protein that assists in the re-modelling of the Saccharomyces cerevisiae cell wall (CW) and in the repair of damage caused by the polyhexamethylene biguanide (PHMB) polymer to the cell wall. Its absence produces a re-organization of the CW structure that result in resistance to lysis by glucanase. Hence, the present study aimed to extend the analysis of the Ncw2 protein (Ncw2p) to determine its physiological role in the yeast cell surface. The results showed that Ncw2p is transported to the cell surface upon O-mannosylation mediated by the Pmt1p-Pmt2p enzyme complex. It co-localises with the yeast bud scars, a region in cell surface formed by chitin deposition. Once there, Ncw2p enables correct chitin/ß-glucan structuring during the exponential growth. The increase in molecular mass by hyper-mannosylation coincides with the increasing in chitin deposition, and leads to glucanase resistance. Treatment of the yeast cells with PHMB produced the same biological effects observed for the passage from exponential to stationary growth phase. This might be a possible mechanism of yeast protection against cationic biocides. In conclusion, we propose that Ncw2p takes part in the mechanism involved in the control of cell surface rigidity by aiding on the linkage between chitin and glucan layers in the modelling of the cell wall during cell growth.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Parede Celular , Quitina , Glucanos , Proteínas de Membrana , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Arthritis Rheumatol ; 73(11): 2069-2077, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33881228

RESUMO

OBJECTIVE: Changes in protein glycosylation are a hallmark of immune-mediated diseases. Glycans are master regulators of the inflammatory response and are important molecules in self-nonself discrimination. This study was undertaken to investigate whether lupus nephritis (LN) exhibits altered cellular glycosylation to identify a unique glycosignature that characterizes LN pathogenesis. METHODS: A comprehensive tissue glycomics characterization was performed in kidney specimens from patients with systemic lupus erythematosus and biopsy-proven LN. A combination of advanced tissue mass spectrometry, in situ glyco-characterization, and ex vivo glycophenotyping was performed to structurally map the repertoire of N-glycans in LN tissue samples. RESULTS: LN exhibited a unique glycan signature characterized by increased abundance and spatial distribution of unusual mannose-enriched glycans that are typically found in lower microorganisms. This glycosignature was specific for LN, as it was not observed in other kidney diseases. Exposure of mannosylated glycans in LN was shown to occur at the cell surface of kidney cells, promoting increased recognition by specific glycan-recognizing receptors expressed by immune cells. This abnormal glycosignature of LN was shown to be due to a deficient complex N-glycosylation pathway and a proficient O-mannosylation pathway. Moreover, mannosylation levels detected in kidney biopsy samples from patients with LN at the time of diagnosis were demonstrated to predict the development of chronic kidney disease (CKD) with 93% specificity. CONCLUSION: Cellular mannosylation is a marker of LN, predicting the development of CKD, and thus representing a potential glycobiomarker to be included in the diagnostic and prognostic algorithm of LN.


Assuntos
Rim/metabolismo , Lúpus Eritematoso Sistêmico/metabolismo , Nefrite Lúpica/diagnóstico , Polissacarídeos/metabolismo , Adulto , Idoso , Biomarcadores/metabolismo , Progressão da Doença , Feminino , Glicosilação , Humanos , Nefrite Lúpica/metabolismo , Masculino , Pessoa de Meia-Idade , Prognóstico
5.
J Biol Chem ; 296: 100433, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33610554

RESUMO

Defects in protein O-mannosylation lead to severe congenital muscular dystrophies collectively known as α-dystroglycanopathy. A hallmark of these diseases is the loss of the O-mannose-bound matriglycan on α-dystroglycan, which reduces cell adhesion to the extracellular matrix. Mutations in protein O-mannose ß1,2-N-acetylglucosaminyltransferase 1 (POMGNT1), which is crucial for the elongation of O-mannosyl glycans, have mainly been associated with muscle-eye-brain (MEB) disease. In addition to defects in cell-extracellular matrix adhesion, aberrant cell-cell adhesion has occasionally been observed in response to defects in POMGNT1. However, specific molecular consequences of POMGNT1 deficiency on cell-cell adhesion are largely unknown. We used POMGNT1 knockout HEK293T cells and fibroblasts from an MEB patient to gain deeper insight into the molecular changes in POMGNT1 deficiency. Biochemical and molecular biological techniques combined with proteomics, glycoproteomics, and glycomics revealed that a lack of POMGNT1 activity strengthens cell-cell adhesion. We demonstrate that the altered intrinsic adhesion properties are due to an increased abundance of N-cadherin (N-Cdh). In addition, site-specific changes in the N-glycan structures in the extracellular domain of N-Cdh were detected, which positively impact on homotypic interactions. Moreover, in POMGNT1-deficient cells, ERK1/2 and p38 signaling pathways are activated and transcriptional changes that are comparable with the epithelial-mesenchymal transition (EMT) are triggered, defining a possible molecular mechanism underlying the observed phenotype. Our study indicates that changes in cadherin-mediated cell-cell adhesion and other EMT-related processes may contribute to the complex clinical symptoms of MEB or α-dystroglycanopathy in general and suggests that the impact of changes in O-mannosylation on N-glycosylation has been underestimated.


Assuntos
Adesão Celular/fisiologia , N-Acetilglucosaminiltransferases/deficiência , N-Acetilglucosaminiltransferases/metabolismo , Antígenos CD/metabolismo , Antígenos CD/fisiologia , Caderinas/metabolismo , Caderinas/fisiologia , Adesão Celular/genética , Distroglicanas/metabolismo , Glicômica , Glicosilação , Glicosiltransferases/deficiência , Glicosiltransferases/metabolismo , Células HEK293 , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Manose/química , Distrofias Musculares/genética , N-Acetilglucosaminiltransferases/fisiologia , Polissacarídeos , Transdução de Sinais/fisiologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
6.
Elife ; 92020 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-33357379

RESUMO

Protein O-mannosyltransferases (PMTs) represent a conserved family of multispanning endoplasmic reticulum membrane proteins involved in glycosylation of S/T-rich protein substrates and unfolded proteins. PMTs work as dimers and contain a luminal MIR domain with a ß-trefoil fold, which is susceptive for missense mutations causing α-dystroglycanopathies in humans. Here, we analyze PMT-MIR domains by an integrated structural biology approach using X-ray crystallography and NMR spectroscopy and evaluate their role in PMT function in vivo. We determine Pmt2- and Pmt3-MIR domain structures and identify two conserved mannose-binding sites, which are consistent with general ß-trefoil carbohydrate-binding sites (α, ß), and also a unique PMT2-subfamily exposed FKR motif. We show that conserved residues in site α influence enzyme processivity of the Pmt1-Pmt2 heterodimer in vivo. Integration of the data into the context of a Pmt1-Pmt2 structure and comparison with homologous ß-trefoil - carbohydrate complexes allows for a functional description of MIR domains in protein O-mannosylation.


Assuntos
Manosiltransferases/química , Conformação Proteica , Animais , Glicosilação , Humanos , Domínios Proteicos
7.
Mol Genet Metab Rep ; 25: 100673, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33209585

RESUMO

Variants in Phosphomannomutase 2 (PMM2) lead to PMM2-CDG, the most frequent congenital disorder of glycosylation (CDG). We here describe the disease course of a ten-month old patient who presented with the classical PMM2-CDG symptoms as cerebellar hypoplasia, retinitis pigmentosa, seizures, short stature, hepato- and splenomegaly, anaemia, recurrent vomiting and inverted mamillae. A severe form of tetralogy of Fallot was diagnosed and corrective surgery was performed at the age of 10 months. At the end of the cardiopulmonary bypass, a sudden oedematous reaction of the myocardium accompanied by biventricular pump failure was observed immediately after heparin antagonization with protamine sulfate. The patient died seven days after surgery, since myocardial function did not recover on ECMO support. We here describe the first patient carrying the homozygous variant g.18313A > T in the PMM2 gene (NG_009209.1) that either can lead to c.394A > T (p.I132F) or even loss of 100 bp due to exon 5 skipping (c.348_447del; p.G117Rfs*4) which is comparable to a null allele. Proliferation and doubling time of the patient's fibroblasts were affected. In addition, we show that the induction of cellular stress by elevating the cell culture temperature to 40 °C led to a decrease of the patients' PMM2 transcript as well as PMM2 protein levels and subsequently to a significant loss of residual activity. We assume that metabolic stressful processes occurring after cardiac surgery led to the drop of the patient's PMM activity below a life-sustaining niveau which paved the way for the fatal outcome.

8.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835530

RESUMO

O-mannosylation is implicated in protein quality control in Saccharomyces cerevisiae due to the attachment of mannose to serine and threonine residues of un- or misfolded proteins in the endoplasmic reticulum (ER). This process also designated as unfolded protein O-mannosylation (UPOM) that ends futile folding cycles and saves cellular resources is mainly mediated by protein O-mannosyltransferases Pmt1 and Pmt2. Here we describe a genetic screen for factors that influence O-mannosylation in yeast, using slow-folding green fluorescent protein (GFP) as a reporter. Our screening identifies the RNA binding protein brefeldin A resistance factor 1 (Bfr1) that has not been linked to O-mannosylation and ER protein quality control before. We find that Bfr1 affects O-mannosylation through changes in Pmt1 and Pmt2 protein abundance but has no effect on PMT1 and PMT2 transcript levels, mRNA localization to the ER membrane or protein stability. Ribosome profiling reveals that Bfr1 is a crucial factor for Pmt1 and Pmt2 translation thereby affecting unfolded protein O-mannosylation. Our results uncover a new level of regulation of protein quality control in the secretory pathway.


Assuntos
Manosiltransferases/química , Manosiltransferases/genética , Proteínas Repressoras/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo , Glicosilação , Manosiltransferases/metabolismo , Dobramento de Proteína , Processamento de Proteína Pós-Traducional , Estabilidade Proteica , Proteínas Repressoras/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Deleção de Sequência
9.
Molecules ; 23(10)2018 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-30322079

RESUMO

For proteins entering the secretory pathway, a major factor contributing to maturation and homeostasis is glycosylation. One relevant type of protein glycosylation is O-mannosylation, which is essential and evolutionarily-conserved in fungi, animals, and humans. Our recent proteome-wide study in the eukaryotic model organism Saccharomyces cerevisiae revealed that more than 26% of all proteins entering the secretory pathway receive O-mannosyl glycans. In a first attempt to understand the impact of O-mannosylation on these proteins, we took advantage of a tandem fluorescent timer (tFT) reporter to monitor different aspects of protein dynamics. We analyzed tFT-reporter fusions of 137 unique O-mannosylated proteins, mainly of the secretory pathway and the plasma membrane, in mutants lacking the major protein O-mannosyltransferases Pmt1, Pmt2, or Pmt4. In these three pmtΔ mutants, a total of 39 individual proteins were clearly affected, and Pmt-specific substrate proteins could be identified. We observed that O-mannosylation may cause both enhanced and diminished protein abundance and/or stability when compromised, and verified our findings on the examples of Axl2-tFT and Kre6-tFT fusion proteins. The identified target proteins are a valuable resource towards unraveling the multiple functions of O-mannosylation at the molecular level.


Assuntos
Manose/química , Manosiltransferases/genética , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Membrana Celular , Genes Reporter , Glicosilação , Manosiltransferases/metabolismo , Microscopia de Fluorescência , Mutação , Estabilidade Proteica , Proteômica , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Mol Genet Metab ; 123(3): 364-374, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29396028

RESUMO

Congenital disorders of glycosylation (CDG) are genetic defects in the glycoconjugate biosynthesis. >100 types of CDG are known, most of them cause multi-organ diseases. Here we describe a boy whose leading symptoms comprise cutis laxa, pancreatic insufficiency and hepatosplenomegaly. Whole exome sequencing identified the novel hemizygous mutation c.542T>G (p.L181R) in the X-linked ATP6AP1, an accessory protein of the mammalian vacuolar H+-ATPase, which led to a general N-glycosylation deficiency. Studies of serum N-glycans revealed reduction of complex sialylated and appearance of truncated diantennary structures. Proliferation of the patient's fibroblasts was significantly reduced and doubling time prolonged. Additionally, there were alterations in the fibroblasts' amino acid levels and the acylcarnitine composition. Especially, short-chain species were reduced, whereas several medium- to long-chain acylcarnitines (C14-OH to C18) were elevated. Investigation of the main lipid classes revealed that total cholesterol was significantly enriched in the patient's fibroblasts at the expense of phophatidylcholine and phosphatidylethanolamine. Within the minor lipid species, hexosylceramide was reduced, while its immediate precursor ceramide was increased. Since catalase activity and ACOX3 expression in peroxisomes were reduced, we assume an ATP6AP1-dependent impact on the ß-oxidation of fatty acids. These results help to understand the complex clinical characteristics of this new patient.


Assuntos
Defeitos Congênitos da Glicosilação/genética , Cútis Laxa/genética , Insuficiência Pancreática Exócrina/genética , Metaboloma/genética , ATPases Vacuolares Próton-Translocadoras/genética , Acil-CoA Oxidase/metabolismo , Catalase/metabolismo , Defeitos Congênitos da Glicosilação/diagnóstico , Defeitos Congênitos da Glicosilação/metabolismo , Cútis Laxa/diagnóstico , Cútis Laxa/metabolismo , Insuficiência Pancreática Exócrina/diagnóstico , Insuficiência Pancreática Exócrina/metabolismo , Ácidos Graxos/metabolismo , Genes Ligados ao Cromossomo X/genética , Humanos , Lactente , Masculino , Metabolômica , Oxirredução , ATPases Vacuolares Próton-Translocadoras/deficiência , Sequenciamento do Exoma
11.
Int J Mol Sci ; 18(6)2017 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-28598353

RESUMO

O-Mannosylation is a type of protein glycosylation initiated in the endoplasmic reticulum (ER) by the protein O-mannosyltransferase (PMT) family. Despite the vital role of O-mannosylation, its molecular functions and regulation are not fully characterized. To further explore the cellular impact of protein O-mannosylation, we performed a genome-wide screen to identify Saccharomyces cerevisiae mutants with increased sensitivity towards the PMT-specific inhibitor compound R3A-5a. We identified the cell wall and the ER as the cell compartments affected most upon PMT inhibition. Especially mutants with defects in N-glycosylation, biosynthesis of glycosylphosphatidylinositol-anchored proteins and cell wall ß-1,6-glucan showed impaired growth when O-mannosylation became limiting. Signaling pathways that counteract cell wall defects and unbalanced ER homeostasis, namely the cell wall integrity pathway and the unfolded protein response, were highly crucial for the cell growth. Moreover, among the most affected mutants, we identified Ost3, one of two homologous subunits of the oligosaccharyltransferase complexes involved in N-glycosylation, suggesting a functional link between the two pathways. Indeed, we identified Pmt2 as a substrate for Ost3 suggesting that the reduced function of Pmt2 in the absence of N-glycosylation promoted sensitivity to the drug. Interestingly, even though S. cerevisiae Pmt1 and Pmt2 proteins are highly similar on the sequence, as well as the structural level and act as a complex, we identified only Pmt2, but not Pmt1, as an Ost3-specific substrate protein.


Assuntos
Manosiltransferases/metabolismo , Saccharomyces cerevisiae/metabolismo , Parede Celular/metabolismo , Retículo Endoplasmático/metabolismo , Ativação Enzimática , Expressão Gênica , Glicosilação , Manosiltransferases/antagonistas & inibidores , Manosiltransferases/genética , Modelos Moleculares , Mutação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Especificidade por Substrato , Resposta a Proteínas não Dobradas
12.
PLoS One ; 11(11): e0166119, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27812179

RESUMO

Protein O-mannosylation is a post-translational modification essential for correct development of mammals. In humans, deficient O-mannosylation results in severe congenital muscular dystrophies often associated with impaired brain and eye development. Although various O-mannosylated proteins have been identified in the recent years, the distribution of O-mannosyl glycans in the mammalian brain and target proteins are still not well defined. In the present study, rabbit monoclonal antibodies directed against the O-mannosylated peptide YAT(α1-Man)AV were generated. Detailed characterization of clone RKU-1-3-5 revealed that this monoclonal antibody recognizes O-linked mannose also in different peptide and protein contexts. Using this tool, we observed that mono-O-mannosyl glycans occur ubiquitously throughout the murine brain but are especially enriched at inhibitory GABAergic neurons and at the perineural nets. Using a mass spectrometry-based approach, we further identified glycoproteins from the murine brain that bear single O-mannose residues. Among the candidates identified are members of the cadherin and plexin superfamilies and the perineural net protein neurocan. In addition, we identified neurexin 3, a cell adhesion protein involved in synaptic plasticity, and inter-alpha-trypsin inhibitor 5, a protease inhibitor important in stabilizing the extracellular matrix, as new O-mannosylated glycoproteins.


Assuntos
Encéfalo/metabolismo , Glicoproteínas/química , Glicoproteínas/metabolismo , Manose/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Transporte Biológico , Encéfalo/citologia , Neurônios GABAérgicos/metabolismo , Camundongos
13.
Oncotarget ; 7(40): 65231-65246, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27533452

RESUMO

Dysregulation of tumor suppressor protein E-cadherin is an early molecular event in cancer. O-mannosylation profile of E-cadherin is a newly-described post-translational modification crucial for its adhesive functions in homeostasis. However, the role of O-mannosyl glycans in E-cadherin-mediated cell adhesion in cancer and their interplay with N-glycans remains largely unknown. We herein demonstrated that human gastric carcinomas exhibiting a non-functional E-cadherin display a reduced expression of O-mannosyl glycans concomitantly with increased modification with branched complex N-glycans. Accordingly, overexpression of MGAT5-mediated branched N-glycans both in gastric cancer cells and transgenic mice models led to a significant decrease of O-mannosyl glycans attached to E-cadherin that was associated with impairment of its tumour suppressive functions. Importantly, overexpression of protein O-mannosyltransferase 2 (POMT2) induced a reduced expression of branched N-glycans which led to a protective effect of E-cadherin biological functions. Overall, our results reveal a newly identified mechanism of (dys)regulation of E-cadherin that occur through the interplay between O-mannosylation and N-glycosylation pathway.


Assuntos
Adenocarcinoma/metabolismo , Caderinas/metabolismo , Neoplasias Gástricas/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Adenocarcinoma/patologia , Animais , Glicosilação , Humanos , Manose/metabolismo , Camundongos , Camundongos Transgênicos , Polissacarídeos , Processamento de Proteína Pós-Traducional/fisiologia , Neoplasias Gástricas/patologia
14.
J Biol Chem ; 291(34): 18006-15, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27358400

RESUMO

Protein O-mannosylation is an essential post-translational modification. It is initiated in the endoplasmic reticulum by a family of protein O-mannosyltransferases that are conserved from yeast (PMTs) to human (POMTs). The degree of functional conservation between yeast and human protein O-mannosyltransferases is uncharacterized. In bakers' yeast, the main in vivo activities are due to heteromeric Pmt1-Pmt2 and homomeric Pmt4 complexes. Here we describe an enzymatic assay that allowed us to monitor Pmt4 activity in vitro We demonstrate that detergent requirements and acceptor substrates of yeast Pmt4 are different from Pmt1-Pmt2, but resemble that of human POMTs. Furthermore, we mimicked two POMT1 amino acid exchanges (G76R and V428D) that result in severe congenital muscular dystrophies in humans, in yeast Pmt4 (I112R and I435D). In vivo and in vitro analyses showed that general features such as protein stability of the Pmt4 variants were not significantly affected, however, the mutants proved largely enzymatically inactive. Our results demonstrate functional and biochemical similarities between POMT1 and its orthologue from bakers' yeast Pmt4.


Assuntos
Manosiltransferases/química , Saccharomyces cerevisiae/genética , Substituição de Aminoácidos , Estabilidade Enzimática , Humanos , Manosiltransferases/genética , Manosiltransferases/metabolismo , Mutação de Sentido Incorreto , Proteínas de Saccharomyces cerevisiae
15.
Curr Opin Cell Biol ; 41: 100-8, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27161930

RESUMO

Protein O-mannosylation and N-glycosylation are essential post-translational modifications, which initiate in the endoplasmic reticulum (ER). In yeast, the two glycosylation machineries act at the Sec61 translocon complex where they can even compete for certain substrate proteins. N-linked glycans play a crucial role in the ER quality control of glycoproteins. In recent years, it became clear that in addition to its important functions for cell surface proteins, O-mannosylation impacts the ER protein homeostasis. These glycans can exclude unfavorable folding intermediates from futile folding attempts, increase the solubility of irreversibly misfolded proteins, and even mark them for degradation. O-Mannose glycoproteomics now captures the molecular complexity of this modification opening exciting opportunities to explore further roles of O-mannosylation in the early secretory pathway.


Assuntos
Proteínas/metabolismo , Via Secretória , Animais , Retículo Endoplasmático/metabolismo , Glicosilação , Humanos , Manose/metabolismo , Saccharomyces cerevisiae/metabolismo
16.
Mol Cell Proteomics ; 15(4): 1323-37, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26764011

RESUMO

O-Mannosylation is a vital protein modification conserved from fungi to humans. Yeast is a perfect model to study this post-translational modification, because in contrast to mammalsO-mannosylation is the only type ofO-glycosylation. In an essential step toward the full understanding of proteinO-mannosylation we mapped theO-mannose glycoproteome in baker's yeast. Taking advantage of anO-glycan elongation deficient yeast strain to simplify sample complexity, we identified over 500O-glycoproteins from all subcellular compartments for which over 2300O-mannosylation sites were mapped by electron-transfer dissociation (ETD)-based MS/MS. In this study, we focus on the 293O-glycoproteins (over 1900 glycosylation sites identified by ETD-MS/MS) that enter the secretory pathway and are targets of ER-localized proteinO-mannosyltransferases. We find thatO-mannosylation is not only a prominent modification of cell wall and plasma membrane proteins, but also of a large number of proteins from the secretory pathway with crucial functions in protein glycosylation, folding, quality control, and trafficking. The analysis of glycosylation sites revealed thatO-mannosylation is favored in unstructured regions and ß-strands. Furthermore,O-mannosylation is impeded in the proximity ofN-glycosylation sites suggesting the interplay of these types of post-translational modifications. The detailed knowledge of the target proteins and theirO-mannosylation sites opens for discovery of new roles of this essential modification in eukaryotes, and for a first glance on the evolution of different types ofO-glycosylation from yeast to mammals.


Assuntos
Glicoproteínas/química , Glicoproteínas/metabolismo , Manose/metabolismo , Proteômica/métodos , Saccharomyces cerevisiae/genética , Sítios de Ligação , Retículo Endoplasmático/metabolismo , Glicoproteínas/genética , Glicosilação , Modelos Moleculares , Domínios Proteicos , Estrutura Secundária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
17.
Proc Natl Acad Sci U S A ; 112(51): 15648-53, 2015 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-26644575

RESUMO

Dynamic cycling of N-Acetylglucosamine (GlcNAc) on serine and threonine residues (O-GlcNAcylation) is an essential process in all eukaryotic cells except yeast, including Saccharomyces cerevisiae and Schizosaccharomyces pombe. O-GlcNAcylation modulates signaling and cellular processes in an intricate interplay with protein phosphorylation and serves as a key sensor of nutrients by linking the hexosamine biosynthetic pathway to cellular signaling. A longstanding conundrum has been how yeast survives without O-GlcNAcylation in light of its similar phosphorylation signaling system. We previously developed a sensitive lectin enrichment and mass spectrometry workflow for identification of the human O-linked mannose (O-Man) glycoproteome and used this to identify a pleothora of O-Man glycoproteins in human cell lines including the large family of cadherins and protocadherins. Here, we applied the workflow to yeast with the aim to characterize the yeast O-Man glycoproteome, and in doing so, we discovered hitherto unknown O-Man glycosites on nuclear, cytoplasmic, and mitochondrial proteins in S. cerevisiae and S. pombe. Such O-Man glycoproteins were not found in our analysis of human cell lines. However, the type of yeast O-Man nucleocytoplasmic proteins and the localization of identified O-Man residues mirror that of the O-GlcNAc glycoproteome found in other eukaryotic cells, indicating that the two different types of O-glycosylations serve the same important biological functions. The discovery opens for exploration of the enzymatic machinery that is predicted to regulate the nucleocytoplasmic O-Man glycosylations. It is likely that manipulation of this type of O-Man glycosylation will have wide applications for yeast bioprocessing.


Assuntos
Núcleo Celular/metabolismo , Citoplasma/metabolismo , Glicoproteínas/metabolismo , Manose/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Acetilglucosamina/metabolismo , Sequência de Aminoácidos , Glicosilação , Dados de Sequência Molecular , Fosforilação , Proteoma
18.
J Biol Chem ; 289(12): 8599-611, 2014 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-24519942

RESUMO

O-Mannosylation and N-glycosylation are essential protein modifications that are initiated in the endoplasmic reticulum (ER). Protein translocation across the ER membrane and N-glycosylation are highly coordinated processes that take place at the translocon-oligosaccharyltransferase (OST) complex. In analogy, it was assumed that protein O-mannosyltransferases (PMTs) also act at the translocon, however, in recent years it turned out that prolonged ER residence allows O-mannosylation of un-/misfolded proteins or slow folding intermediates by Pmt1-Pmt2 complexes. Here, we reinvestigate protein O-mannosylation in the context of protein translocation. We demonstrate the association of Pmt1-Pmt2 with the OST, the trimeric Sec61, and the tetrameric Sec63 complex in vivo by co-immunoprecipitation. The coordinated interplay between PMTs and OST in vivo is further shown by a comprehensive mass spectrometry-based analysis of N-glycosylation site occupancy in pmtΔ mutants. In addition, we established a microsomal translation/translocation/O-mannosylation system. Using the serine/threonine-rich cell wall protein Ccw5 as a model, we show that PMTs efficiently mannosylate proteins during their translocation into microsomes. This in vitro system will help to unravel mechanistic differences between co- and post-translocational O-mannosylation.


Assuntos
Manosiltransferases/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Glicosilação , Manosiltransferases/análise , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/análise
19.
Proc Natl Acad Sci U S A ; 110(52): 21024-9, 2013 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-24297939

RESUMO

In recent years protein O-mannosylation has become a focus of attention as a pathomechanism underlying severe congenital muscular dystrophies associated with neuronal migration defects. A key feature of these disorders is the lack of O-mannosyl glycans on α-dystroglycan, resulting in abnormal basement membrane formation. Additional functions of O-mannosylation are still largely unknown. Here, we identify the essential cell-cell adhesion glycoprotein epithelial (E)-cadherin as an O-mannosylated protein and establish a functional link between O-mannosyl glycans and cadherin-mediated cell-cell adhesion. By genetically and pharmacologically blocking protein O-mannosyltransferases, we found that this posttranslational modification is essential for preimplantation development of the mouse embryo. O-mannosylation-deficient embryos failed to proceed from the morula to the blastocyst stage because of defects in the molecular architecture of cell-cell contact sites, including the adherens and tight junctions. Using mass spectrometry, we demonstrate that O-mannosyl glycans are present on E-cadherin, the major cell-adhesion molecule of blastomeres, and present evidence that this modification is generally conserved in cadherins. Further, the use of newly raised antibodies specific for an O-mannosyl-conjugated epitope revealed that these glycans are present on early mouse embryos. Finally, our cell-aggregation assays demonstrated that O-mannosyl glycans are crucial for cadherin-based cell adhesion. Our results redefine the significance of O-mannosylation in humans and other mammals, showing the immense impact of cadherins on normal as well as pathogenic cell behavior.


Assuntos
Junções Aderentes/metabolismo , Caderinas/metabolismo , Adesão Celular/fisiologia , Embrião de Mamíferos/citologia , Desenvolvimento Embrionário/fisiologia , Manose/metabolismo , Animais , Primers do DNA/genética , Cães , Embrião de Mamíferos/fisiologia , Imunofluorescência , Glicosilação , Células Madin Darby de Rim Canino , Espectrometria de Massas , Camundongos , Polissacarídeos/metabolismo
20.
FEBS Lett ; 587(22): 3715-21, 2013 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-24113656

RESUMO

O-mannosylation is a vital protein modification. In humans, defective O-mannosylation of α-dystroglycan results in severe congenital muscular dystrophies. However, other proteins bearing this modification in vivo are still largely unknown. Here, we describe a highly reliable method combining glycosidase treatment with LC-MS analyses to identify mammalian O-mannosylated proteins from tissue sources. Our workflow identified T-cadherin (H-cadherin, CDH13) as a novel O-mannosylated protein. In contrast to known O-mannosylated proteins, single mannose residues (Man-α-Ser/Thr) are attached to this cell adhesion molecule. Conserved O-glycosylation sites in T-, E- and N-cadherins from different species, point to a general role of O-mannosyl glycans for cadherin function.


Assuntos
Caderinas/metabolismo , Manose/metabolismo , Músculo Esquelético/metabolismo , Processamento de Proteína Pós-Traducional , Sequência de Aminoácidos , Animais , Sequência Conservada , Glicosilação , Dados de Sequência Molecular , Proteínas de Plantas/química , Coelhos , alfa-Manosidase/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA